首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two lettuce cultivars (Lactuca sativa L., cv. Calmar and cv. Climax) were selected to compare their tolerance to salt stress. The plants were grown in a hydroponic system using a 0.5 modified Hoagland solution. Treatments of 0, 40, 80, and 120 mol m–3 NaCl or 0 and 20 mol m–3 Na2SO4 were started when the second leaf above the cotyledons appeared. The plants were harvested 20 days later. Climax showed a greater tolerance to salinity at the 40 mol m–3 NaCl concentration; the % decrease in both shoot and root fresh weight was significantly less than Calmar. No differences between the cultivars were found in the Na2SO4 experiments. Differences in root Cl content at the 40 mol m–3 concentration corresponded to an enhanced water content of the roots. A mechanism for the observed differences in salt tolerance between the two cultivars is discussed.  相似文献   

2.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

3.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

4.
Batis maritima is a promising halophyte for sand‐dune stabilization and saline‐soil reclamation. This species has also applications in herbal medicine and as an oilseed crop. Here, we address the plant response to salinity reaching up to two‐fold seawater concentration (0–1000 mM NaCl), with a particular emphasis on growth, water status, mineral nutrition, proline content, and photosystem II integrity. Plant biomass production was maximal at 200 mM NaCl, and the plants survived even when challenged with 1000 mM NaCl. Plant water status was not impaired by the high accumulation of sodium in shoots, suggesting that Na+ compartmentalization efficiently took place in vacuoles. Concentrations of Mg2+ and K+ in shoots were markedly lower in salt‐treated plants, while that of Ca2+ was less affected. Soluble‐sugar and chlorophyll concentrations were hardly affected by salinity, whereas proline concentration increased significantly in shoots of salt‐treated plants. Maximum quantum efficiency (Fv/Fm), quantum yield of PSII (ΦPSII), and electron‐transport rate (ETR) were maximal at 200–300 mM NaCl. Both nonphotochemical quenching (NPQ) and photochemical quenching (qP) were salt‐independent. Interestingly, transferring the plants previously challenged with supraoptimal salinities (400–1000 mM NaCl) to the optimal salinity (200 mM NaCl) substantially restored their growth activity. Altogether, our results indicate that B. maritima is an obligate halophyte, requiring high salt concentrations for optimal growth, and surviving long‐term extreme salinity. Such a performance could be ascribed to the plant capability to use sodium for osmotic adjustment, selective absorption of K+ over Na+ in concomitance with the stability of PSII functioning, and the absence of photosynthetic pigment degradation.  相似文献   

5.
The effect of sodium chloride (NaCl), sodium sulfate (Na2SO4), and potassium chloride (KCl) on growth and ion concentrations of faba bean (Vicia faba L. cv. Troy) was studied. After 14 or 15 d of isoosmotic treatment with 100 mM NaCl or 75 mM Na2SO4, respectively, plants developed toxicity symptoms. These symptoms were characterized by local and nonchlorotic wilting spots, which later turned to black, necrotic spots. In contrast to NaCl or Na2SO4 treatment, plants treated with 100 mM KCl did not show these symptoms. The symptoms occurred on those leaves that accumulated highest concentrations of Na+ and showed highest Na+ : K+ ratios. Our results indicate that Na+ toxicity inducing K+ deficiency is responsible for the spot necrosis of faba bean. Additionally, chlorotic symptoms occurred. The concentrations of Na+ and Cl were determined in chlorotic leaves and in isolated chloroplasts. The reduction of chlorophyll in leaves after NaCl exposure may be explained in terms of high Cl concentrations in the chloroplasts and appears to depend on high Na+ concentrations. Chlorotic toxicity symptoms can be avoided by additional Mg2+ application.  相似文献   

6.
We investigated the effects of silicon (Si) and the levels and sources of salinity on the growth and some physiological properties of wheat (Triticum aestivum cv. Chamran) in a sandy loam soil under greenhouse conditions. Treatments comprised four Si levels (8, 50, 100 and 150 mg kg?1 soil), four salinity levels (0.46, 4, 8 and 12 dS m?1) and two salinity sources (sodium chloride (NaCl) and four-salt combination). Salts combination included NaCl, sodium sulfate (Na2SO4), calcium chloride (CaCl2) and magnesium sulfate (MgSO4) at a molar ratio of 4:2:2:1. The experiment was arranged as a completely randomized design in a factorial manner, with three replications. Increasing salinity level resulted in a significant decrease in shoot dry weight, chlorophyll content and catalase (CAT) activity, and it caused a marked increase in proline and glycine betaine (GB) concentrations and superoxide dismutase (SOD) enzyme activity. The stimulating effect on GB accumulation and SOD activity was more intense in NaCl-treated plants. However, the source of salinity had no significant effect on shoot dry weight, chlorophyll and proline concentrations, and CAT activity. Si application enhanced all the above-mentioned parameters, except for proline. The suppressing effect of salinity on shoot dry weight, chlorophyll concentration and CAT activity was alleviated by Si supplementation. The stimulating effects of Si fertilization on shoot dry weight and chlorophyll concentration became more pronounced at higher salinity levels. It could be concluded that a decrease in soil osmotic potential, nutrient imbalance and increasing reactive oxygen species (ROS) in salt-treated plants caused growth suppression, while Si supply decreased the deleterious effects of excess salt on wheat growth. Consequently, it appears that when wheat plants are to be grown in salt-affected soils, it is highly recommended to supply them with adequate available silicon (Si).  相似文献   

7.
The effect of varying hydrogel (0, 0.5, and 1.0% w/w) supply on some agro-physiological properties, such as dry matter, nutrient contents, chlorophyll contents, proline content, and ionic balance of bean plants in different salt sources and stress due to doses were investigated. Plants were treated with eight salt sources [sodium chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), calcium sulfate (CaSO4), potassium chloride (KCl), potassium sulfate (K2SO4), magnesium chloride (MgCl2), magnesium sulfate (MgSO4)] and four concentrations (0, 30, 60, and 120 mM doses) for 60 days in a growth media. Salt type, doses, and hydrogel (HG) affected the soil electrical conductivity. Soil salinity affected the parameters considered, and changed the nutrient balance of plants. High salt concentration caused substantial reduction in plant growth. Different salt concentrations negatively affected plant dry weight. The highest decrease of plant root dry weight was obtained with NaCl application followed by Na2SO4, CaCl2, CaSO4, MgCl2, MgSO4, KCl, and K2SO4, and similarly NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, and MgSO4 in root dry weight. Total chlorophyll and nitrate contents of plants decreased with increasing salt doses, and the lowest value was obtained for NaCl application. Proline contents of plants were increased with increasing salt doses, and the highest value was obtained with the NaCl application. The effects of salt concentrations in nitrogen (N), potassium (K), and phosphorus (P) content of plants were significant. The presence of salt in the growth medium induced an important decrease the macro nutrient of the root and shoot part of plant such as N, P, K, calcium (Ca), and magnesium (Mg) content, but the N and P content of root and shoot part of the plant were increased with increasing of the HG application doses. The highest N and P increases were obtained with the 1.0 HG application for all salt types for both the root and shoots of plants. The HG added to saline soil significantly improved the variables affected by high salinity and also increased plant N and P, reduced soil electricity conductivity, nitrate, proline, and electrolyte leakage of plants, enhanced plant root and shoot dry weight by allowing nutrients and water to release to the plant as needed. The results suggested that HG has great potential for use in alleviating salinity stress on plant growth and growth parameters in saline soils of arid and semi-arid areas. This HG appears to be highly effective for use as a soil conditioner in vegetable growing, to improve crop tolerance and growth in saline conditions. It is intended to confirm the results of these studies by field trials.  相似文献   

8.
Olive trees (Olea europaea L.) are considered moderately tolerant to salinity, with clear differences found among cultivars. One‐year‐old self‐rooted olive plants of the Croatian cv. Oblica and Italian cv. Leccino were grown for 90 d in nutrient solutions containing 0, 66, or 166 mM NaCl, respectively. The shoot length and the number of nodes and leaves for both cultivars were not affected by salinity up to 66 mM NaCl. However, at 166 mM NaCl, growth of Leccino was reduced earlier and to a higher extent than growth of Oblica. After 10 d of exposure to 66 and 166 mM NaCl, increased activity of superoxide dismutase (SOD) was observed in Leccino, whereas there was almost no response in Oblica. Reduced SOD activity in Leccino at 166 mM NaCl was observed after prolonged stress (90 d), whereas in Oblica SOD was increased at 66 mM compared to control or 166 mM NaCl. Electrolyte and K+ leakage were increased and relative water content decreased as NaCl concentration increased with similar intensity of response measured in both cultivars. Oblica exhibited an ability to keep a higher K+ : Na+ ratio at all salinity levels compared to Leccino, but since no difference was found in leaf K+ concentration, this was mainly achieved by less Na+ ions reaching the younger leaves. The antioxidative system represents a component of the complex olive salt‐tolerance mechanism, and it seems that the role of SOD in protection from oxidative stress depends on sodium accumulation in leaves.  相似文献   

9.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

10.
Olive (Olea europaea L cv. Leccino and cv. Frantoio) plants grown in aeroponic cultivation system were supplied with Hoagland solutions containing 0 and 150 mM NaCl for 4 weeks. Sodium (Na+), chloride (Cl), and potassium (K+) concentration was measued on 15‐day‐old leaves and K+/Na+ selectivity ratio was calculated. Plant water relations were estimated on the same leaves by measuring leaf bulk water and osmotic potentials, and by calculating leaf turgor pressure. Root and leaf tissues were also analysed for lipid composition, estimating free sterol (FS), glycolipid (GL) and phospholipd (PL) content. The salt‐sensitive Leccino accumulated more Na+ and Cl in the leaves and showed a lower K+/Na+ selectivity ratio than the salt‐tolerant Frantoio. The FS/PL ratio and the content of GL (namely mono‐galactosyldiglyceride, MGDG) in the roots were related to the salt accumulation in the shoot. Salinity‐induced changes on root lipids were more important in Frantoio than in Leccino, indicating the specific role of the roots in salt exclusion mechanisms. Conversely the effect of salinity on leaf lipid composition was more important in the leaves of the salt‐sensitive Leccino.  相似文献   

11.
Seed germination and early growth of the halophyte Atriplex prostrata Boucher were measured to compare sodium chloride (NaCl) to other salts to determine if the inhibitory effects of salinity were osmotic or due to a specific ion inhibition. Seeds of A. prostrata were germinated in solutions containing NaCl, potassium chloride (KC1), sodium sulfate (Na2SO4), and potassium sulfate (K2SO4) at concentrations with osmotic potentials equal to 0, ‐0.75, ‐1.0, and ‐1.5 MPa. Percent germination and shoot length was usually inhibited only at the lowest osmotic potential (‐1.5 MPa). However, at ‐1.5 MPa the rate of germination was more inhibited by sodium salts than by potassium salts. Ungerminated seeds pretreated with salts had recovery germination percentages in distilled water that were equal to that of the freshwater controls indicating that the previous effect of these salts was due to osmotic inhibition rather than a specific ion toxicity.  相似文献   

12.
The effects of salinity on four faba bean (Vicia faba L) cultivars [Giza 429, Giza 843, Misr 1 (Orobanche-tolerant), and Giza 3 (Orobanche-susceptible)] and soil properties were investigated in a pot experiment with addition of 0, 50, and 100 mM sodium chloride (NaCl) for 9 weeks. Salinity significantly decreased calcium (Ca2+), magnesium (Mg2+), potassium (K+), bicarbonate (HCO3 ?), and sulfate (SO4 2?) while significantly increasing sodium (Na+), chloride (Cl?), pH, and electrical conductivity (EC; dS m?1). Root length density (cm cm?3), root mass density (mg cm?3), total dry weight, and salt-tolerance indexes were significantly reduced as a result of application of salinity. The results presented support evidence on the positive relationship between Orobance tolerance and salt tolerance in the three cultivars (Giza 429, Giza 843, and Misr 1). This adaptation was mainly due to a high degree of accumulation of inorganic nitrogen (N), phosphorus (P), K+, Ca2+, and Mg2+ and lesser quantities of Na+ and Cl?, as well as greater K+/Na+ and Ca2+/Na+ ratios.  相似文献   

13.
The absorption and transport of Na and Cl from 0.1 mM and 10 mM 22Na labelled NaCl or 36Cl labelled KCl were examined in 15 days old seedlings of 3 cultivars of rice differing in their tolerance to salinity. Furthermore, the effects of 10, 100 and 1000 ppm (N)2S on their uptake were studied. It was found that in general, the salt‐tolerant cultivars BR and PNL‐1 absorbed more Na and translocated a lesser proportion of it to the shoot, compared to the salt‐sensitive IR‐8, from 0.1 mM NaCl. The presence of (N)2S reduced the uptake of Na in all the cultivars. It was also found that the presence of 100 ppm K, KN or NNreduced Na absorption from 0.1 mM NaCl significantly in all the cultivars, and the translocation to shoot in BR‐ Chloride transport from 0.1 mM NaCl was reduced by (N)2S in all the cultivars. The 3 cultivars differed significantly in the rates of absorption and transport of Na and Cl. The results indicate that PNL‐1 which is a cross of IR‐8 X BR, has inherited the salt tolerance trait from BR. Lower rates of Na translocation to the shoot can be used as an index of salt tolerance in rice.  相似文献   

14.
Physiological responses to salt stress were investigated in two cotton (Gossypium hirsutum L.) cultivars (Pora and Guazuncho) grown hydroponically under various concentrations of NaCl. Dry matter partitioning, plant water relations, mineral composition and proline content were studied. Proline and inorganic solutes were measured to determine their relative contribution to osmotic adjustment. Both leaf water potential (Ψw) and osmotic potential (Ψs)decreased in response to NaCl levels. Although Ψwand Ψs decreased during salt stress, pressure potential Ψp remained between 0.5 to 0.7 MPa in control and all NaCl treatments, even under 200 mol m?3 NaCl. Increased NaCl levels resulted in a significant decrease in root, shoot and leaf growth biomass. Root / shoot ratio increased in response to salt stress. The responses of both cultivars to NaCl stress were similar. Increasing salinity levels increased plant Na+ and Cl?. Potassium level remained stable in the leaves and decreased in the roots with increasing salinity. Salinity decreased Ca2+ and Mg2+ concentrations in leaves but did not affect the root levels of these nutrients. The K/Na selectivity ratio was much greater in the saline treated plants than in the control plants. Osmotic adjustment of roots and leaves was predominantly due to Na+ and Cl? accumulation; the contribution of proline to the osmotic adjustment seemed to be less important in these cotton cultivars.  相似文献   

15.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

16.
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity.  相似文献   

17.
An experiment was conducted to test whether foliar application of KNO3 on wheat in the heading stage could reduce salinity‐induced injuries, produce high grain yield, and improve grain quality. Salt‐resistant DK961 and salt‐sensitive JN17 wheat cultivars under 0 or 100 mM–NaCl conditions were foliarly watered with distilled water or a 10 mM–KNO3 solution. The four treatments included: T1 (CK1), 0 mM NaCl + distilled water; T2, 0 mM NaCl + 10 mM KNO3; T3 (CK2), 100 mM NaCl + distilled water; T4, 100 mM NaCl + 10 mM KNO3. The results indicate that there were no differences (p > 0.05) in plant growth, grain yield, and grain quality between T2 and T1 in both cultivars, but these response variables were significantly lower in T3 than in T1. K+ : Na+ ratio, chlorophyll content, photosynthetic capacity, grain yield, flour yield, water absorbance, ash content, dough‐development time and dough‐stability time were significantly higher in T4 than in T3, while protein concentration, wet‐gluten concentration, and antioxidant enzyme activities were lower. Although foliar application of KNO3 on JN17 enhanced plant growth, grain yield, and grain quality, these parameters were still lower in T4 than in T1. Our findings suggest that cultivating the salt‐resistant wheat cultivar combined with foliar application of KNO3 at heading stage may alleviate salinity injuries and produce higher grain yield and better grain quality under saline conditions.  相似文献   

18.
ABSTRACT

The effect of salinization of soil with Na2SO4, CaCl2, MgCl2, and NaCl (70:35:10:23) on the biochemical characteristics of three wheat (Triticum aestivum L.) cultivars (‘LU-26S,’ ‘Sarsabaz’ and ‘Pasban-90’) was investigated under natural environmental conditions. Twenty-day-old seedlings of all three cultivars were subjected to three salinity treatments: 1.3 (control), 5.0, and 10 dSm?1 for the entire life period of plants. After 120 d of seed sowing, plant biomass production decreased by 49% and 65%, respectively, in response to 5 and 10 dSm?1 salinity levels. Addition of salts to growth medium also had a significant adverse effect on plant height. Increasing salinity treatments caused a great reduction in nitrate reductase activity (NRA) of the leaf. The inhibitory effect of salinity on nitrate reduction rate was more pronounced at the reproductive stage than at the vegetative stage of plant growth. Wheat cultivars ‘LU-26S’ and ‘Sarsabaz’ showed less reduction in NRA due to salinity compared with ‘Pasban-90.’ Ascending salinity levels significantly reduced potassium (K+) and calcium (Ca2+) accumulation in shoots, while the concentration of sodium (Na+) was increased. Salts of growth medium increased the shoot nitrogen (N) concentration, whereas phosphorous (P) concentration of shoots was significantly reduced due to salinity. Wheat cultivars ‘LU-26S’ and ‘Sarsabaz’ proved to be the salt-tolerant ones, producing greater biomass, showing less reduction in NRA, maintaining low sodium (Na+), and accumulating more K+ and Ca2+ in response to salinity. These two cultivars also showed less reduction in shoot K+/Na+ and Ca+/Na+ ratios than in ‘Pasban-90,’ particularly at the 10 dSm?1 salinity level.  相似文献   

19.
Salinity can affect germination of seeds either by creating osmotic potentials that prevent water uptake or by toxic effects of specific ions. This work was carried out to evaluate the germination of sunflower (Helianthus annuus L.) seeds under increasing salinity by using the most abundant salts in China. Potassium (K+), sodium (Na+), and calcium (Ca2+) contents in hypocotyls were determined on the fifth day. At same concentration of salt solution, the adverse effect of ions is in the following sequence: carbonate radical (CO3 2?) > sulfate radical (SO4 2?), chloride (Cl?) > bicarbonate radical (HCO3 ?), magnesium (Mg2+) > Ca2+, and Na+ > K+. The effect of salinity on the germination phase of development is mainly due to its osmotic component other than the ion toxicity. Calcium decreased as increasing of the concentration of salt solutions, and cannot act as the role of enhancing cell division and membrane permeability.  相似文献   

20.
Rice (Oryza sativa L.) is one of the most sensitive crops to drought, salt and cold stresses, particularly at post germination stage. The effects of these stresses on some physiological responses of two (a salt tolerant and a sensitive) rice cultivars ‘FL478’ and ‘IR29’ were investigated in this study. Two-day seedlings were transferred to MS media complemented with iso-osmotic concentrations of sodium chloride (NaCl; 0, 50, 100, and 150 mM) or mannitol (0, 100, 180, and 275 mM) at 25°C or four and 15°C for 10 days. Experiments were carried out based on completely randomized design, with at least three replicates. All three stresses decreased shoot growth, chlorophylls, carotenoids and root starch while increased shoot soluble sugars. The effect of exerted cold stress on growth, hydrogen peroxide (H2O2) and malonyldialdehyde levels, electrolyte leakage, chlorophylls and carotenoids contents was more than or comparable with drought, but greater than salinity. The results also indicated higher tolerance of ‘‘FL478’’ not only to salinity but also to drought compared to ‘‘IR29’’. Therefore, a mechanism for osmotic stress adjustment is probable in ‘‘FL478’’ in addition to low sodium (Na+) to potassium (K+) ratio in shoot tissues under salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号