首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of acidic minesoil on sericea lespedeza [Lespedeza juncea (L.F.) var. sericea (Mig.)] and its nitrogen (N2)‐fixing symbiotic relationship with Bradyrhizobium spp. were examined. Sericea lespedeza was grown in pots with N fertilization, without N fertilization, or with commercial Bradyrhizobium as a seed inoculant. Minesoil (pH 5.2) was fertilized with calcium (Ca), phosphorus (P), molybdenum (Mo), and potassium (K), and the pH level was adjusted to 4.8 or 4.5 with aluminum or iron sulfate [Al2(SO4)3; Fe2(SO4)3]. Minesoil was also limed to pH 6.1. Shoot dry weights, shoot N concentrations, nodule dry weights, and nodule numbers were significantly lower (P < 0.05) when inoculated plants were grown in soil at pH 4.5 and 4.8 compared to limed soil. Thus, the N2 fixation process was adversely affected below pH 5.0. Nitrogen‐fertilized plants grew well in acidified soil, and there were no significant differences in shoot dry weights of such plants among the soil acidification treatments including limed soil. Thus, the N2‐fixing symbiosis appeared to be more sensitive to acidified soil than the plant host. The effects of Al toxicity versus other factors could not be determined because Al2(SO4)3‐ and Fe2(SO4)3‐amended soils contained similar levels of toxic Al at the highest pH (4.8) that prevented N2 fixation.

Time periods required for cells of Bradyrhizobium strains to multiply by a factor of 104 were significantly longer (P ≤ 0.05) in extracts of Al2(SO4)3‐amended soil (pH 4.8 and 4.5) than in extracts of calcium carbonate [CaCO3]‐amended soil (pH 6.1). These increases suggested that reduced multiplication of Bradyrhizobium in acidified minesoils may have been at least partially responsible for the large decreases in nodulation and N2 fixation observed in these soils. It was also reasoned that the inability of existing bacteria to infect and nodulate plant roots may also have been a factor, based on the high inoculation rates used and the abilities of Bradyrhizobium cells to survive and multiply (albeit at a reduced rate) in extracts of acidified soil. Sericea lespedeza is known to tolerate soils of pH 4.5. However, results of this study suggested sericea lespedeza may not fix appreciable N2 in acidic soil below pH 5 when inoculated with commercial Bradyrhizobium, even after the establishment of lespedeza plants tolerant of such conditions.  相似文献   

2.
Toxic levels of aluminum can cause severe yield reductions in many crop species, but sericea lespedeza [Lespedeza cuneata (Dum.‐Cours.) G. Don] has demonstrated considerable tolerance. Aluminum tolerances of six sericea lespedeza cultivars (Am 312, Appalow, AU Lotan, Interstate, Interstate 76, Serala) representing a broad genetic base were evaluated in a Monmouth soil [26.2% Al saturation (pH 4.8) vs. 2.8% Al saturation (pH 5.7)] and in nutrient solutions (0 vs 111 μM Al; pH 4.5). The soil and nutrient culture studies were harvested 30 and 27 d after seeding, respectively.

Aluminum stress did not reduce root and shoot growth significantly, nor were the pooled Al stress x cultivar interactions significant. Cultivars differed significantly in mean shoot and root vigor in nutrient solutions but not in soil. R‐esponses in soil were only weakly correlated with responses in nutrient solutions. Am 312 and Appalow had the lowest relative weight values (dry weight stressed/dry weight unstressed) in both media and Interstate and Interstate 76 the highest. Interstate 76 exhibited a significant positive response (5% level) to Al when evaluated in nutrient solutions.  相似文献   

3.
Abstract

Selected chemical properties of an artificially acidified agricultural soil from northern Idaho were evaluated in a laboratory study. Elemental S and Ca(OH)2were used to manipulate the soil pH of a Latahco silt loam (fine‐silty, mixed, frigid Argiaquic Xeric Argialboll), which had an initial pH of 5.7. A 100 day incubation period resulted in a soil pH manipulation range of 3.3 to 7.0. Chemical properties evaluated included: N mineralization rate, extractable P, AI, Mn, Ca, Mg and K and CEC. N mineralization rate (assessed by anaerobic incubation) decreased with decreasing soil pH. Nitrification rate also decreased as NH4 +‐N accumulated under acid soil conditions. Sodium acetate extractable P was positively linearly correlated (R2= 0.87) with soil pH over the entire pH range evaluated. Potassium chloride extractable Al was less than 1.3 mg kg‐1of soil at pH values higher than 4.4. Consequently, potential Al toxicity problems in these soils are minimal. Extractable Mn increased with decreasing soil pH. Soil CEC, extractable Mg, and extractable K all decreased with increasing soil pH from 3.3 to 7.0. Extractable Ca levels were largely unaffected by changing soil pH. It is likely that the availability of N and P would be the most adversely affected parameters by soil acidification  相似文献   

4.
Abstract

Whether a tropical soil should be limed or not for a particular crop is strongly dependent on the levels of soil aluminum (Al) which can be determined with soil tests. Soil pH is used to predict whether lime is needed in less‐weathered soils, although some evidence indicates a soil Al test would be more accurate. The objectives of this study were to determine and to compare the accuracies of four soil tests to separate soils requiring lime from those that do not, and to determine the cause of acid‐soil injury to soybean [Glycine max (L.) Merr.]. Soybean was grown in the greenhouse on four surface soils representing the major land resource areas of Louisiana and were amended with eight rates of lime, yields determined, and soils analyzed for soil pH, extractable Al, CaCl2‐extractable Al, CaCl2‐extractable manganese (Mn), and Al saturation. Acid‐soil injury in soybean grown on the Litro clay and Stough fsl was probably caused by soil‐Al effects while low soil calcium (Ca) and high soil Mn was likely responsible for lower yields from the Mahan fsl. Leaf Ca from the limed Mahan‐soil treatment was 5‐fold greater and leaf‐Mn 7‐fold less than control levels. Regression analyses’ R2 values were similar for all soil tests except for CaCl2‐extractable Mn, which was lower. Soil tests were compared across soil type by selecting treatments that had the same 85% relative yield. Using this data subset, there was no difference in the soil pH among the four soils, while there were significant differences among soils for all other soil test measurements indicating the superiority of soil pH for identifying acid‐soil injury. Critical test values were 5.1 soil pH, 30 mg kg‐1 extractable Al, 7% Al saturation, 0.7 mg‐kg‐1 CaCl2‐extractable Al, and 9 mg‐kg‐1 CaCl2‐extractable Mn.  相似文献   

5.
Abstract

Paper birch and hybrid poplar were grown in acid minesoils amended with different rates and types of lime. Growth of the trees was correlated with soil pH, Ca, Mg, K, P and three measures of extractable Al ‐ 1 N KCl, 0.01 M CaCl2 and H2O extractable Al. Correlations between soil pH and extractable Al and between the three measures of extractable Al were also determined. Soil pH accounted for the largest share of the total variation in root and shoot growth of both species over all soils. Correlations between tree growth and extractable Al for all soils combined were low and generally non‐significant. Significant correlations were obtained between soil pH and extractable Al and between the three measures of extractable Al, however, the relationships varied among soils.  相似文献   

6.
Effects of 15 annual applications (from 1979 to 1993) of ammonium nitrate (AN), urea, ammonium sulfate (AS), and calcium nitrate (CN) applied at 168 and 336 kg N ha‐1 to bromegrass (Bromus inermis Leyss.) on soil acidification, and concentration of aluminum (Al), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in soil and in hay were investigated in a field experiment on a thin Black Chemozemic (Typic Boroll) soil in Alberta, Canada. Soil was acidified and the concentration of extractable Al, Fe, and Mn was increased by nitrogen (N) application, but the magnitude varied with N source. Soil acidification was greatest with AS, followed by AN and urea, with no effect of CN. At 336 kg N ha‐1 rate, soil was acidified to a depth of 10, 15 and 30 cm with urea, AN AS, respectively. Soil acidification was also greater at 336 kg than 168 kg N ha‐1. The CaCl2‐extractable Al and Fe in the 0–15 cm layer increased with N application, which closely followed the decrease in soil pH from various N sources. Extractable Al and Fe concentration in the 15–30 cm layer increased in response to reduction in soil pH by AS only, and there was no change in the extractable Al and Fe below the 30‐cm depth by any form of N. The DTPA‐extractable Mn in soil generally changed in response to N application. There was no effect of N source on the DTPA‐extractable Zn and Cu in soil. When soil pH had been lowered from N application, the concentration of Al in hay decreased while Zn concentration increased. The Mn concentration in forage increased markedly in response to reduced soil pH from application of AN, urea and AS. There was no effect of N fertilization on the Cu and Fe concentration in hay. In conclusion, the magnitude of soil acidification, changes in the Al, Fe, and Mn concentrations in soil and changes in the Al, Zn, and Mn concentrations in bromegrass hay varied with N source. The results suggest the need for periodic monitoring of soil pH and consideration of liming costs in the economics of various N fertilizers.  相似文献   

7.
Abstract

This study was undertaken to assess the mineralization of nitrogen (N) in rice soils amended with organic residues under flooded condition. A lab incubation study with a 3x3 factorial design (two replications) was conducted with three rice soils (Joydebpur, Faridpur, and Thakurgaon) receiving the following treatments: 1) control, 2) rice straw (Oryza sativa L.), or 3) pea vine (Pisum sativum L.). The organic residue (25 mg straw g‐1 soil) was mixed with soil and glass beads (1:1, soil to beads ratio), and transferred into a Pyrex leaching tube, flooded and then incubated at 35°C for up to 12 weeks. The soils in the leaching tubes were leached (while maintaining flooded condition) at 1,2,4, 8, and 12 weeks with deionized water for determination of NH4‐N, NO3‐N, pH, and Eh. Nitrogen mineralization in soils amended with rice straw was somewhat different than that of soils treated with pea vine. Soil treated with rice straw had a higher N mineralization rate than soils treated with pea vine, which was due to a lower carbon (C):N ratio for rice straw. The potentially mineralizable N pool (No) in soils amended with rice straw and pea vine under flooded conditions, estimated using a 1st order exponential equation, were 7 to 15 times, and 3 to 9 times greater for rice straw No values and pea vine, respectively, than the control. The KN values for unamended soils ranged from 0.35 to 0.52 mg N kg‐1 wk‐1 and rice straw and pea vine treated soils were from 0.75 to 1.22 and 0.46 to 0.58 mgN kg‐1 wk‐1. The lower No and KN values in pea vine treatments suggested there was greater immobilization of N than in rice straw treatments.  相似文献   

8.
9.
Chemical fixation of NH3 to soil organic matter was studied in two Swedish soils with different contents of organic matter: a clay soil with 2.3% C and an organic soil with 36.6% C. 15N‐labelled urea was applied at different rates to both sterilized and non‐sterilized soils. After 10 days, the soils were extracted and washed with K2SO4 and determined for total N and atom% 15N excess. Urea N was recovered as non‐extractable N in sterilized soil corresponding to 9.7% of supplied l5N‐labelled urea in the organic soil and 2.2% in the clay soil. Since no biological immobilization is thought to occur in the sterile soil, this non‐extractable N is suggested to be chemically fixed to soil organic matter. Owing to urea hydrolysis in the clay soil, pH increased from 6.3 to 9.3 and in the organic soil from 5.7 to 6.9 and 8.8, respectively, at the low and high urea supply.  相似文献   

10.
《Applied soil ecology》2009,42(3):351-359
Beringite (B) and zerovalent iron grit (Z), singly and in combination (BZ), were added to a loamy sand soil contaminated by trace elements (Reppel, Belgium), mainly by arsenic (As), to reduce As labile fractions and phytoavailability. An uncontaminated sandy soil was studied for comparison. Soils were placed in large lysimeters cultivated with maize and vegetables for 6 years. pH, organic C and total N content increased in amended soils. The Z and BZ treatments reduced the Ca(NO3)2 extractable soil As and As uptake by lettuce. The BZ lettuces had also the lowest foliar Pb, Cd, Zn, and Mn concentrations. All amendments had positive effects on the soil microbial biomass and reduced the qCO2. Glucose mineralization was increased in Z and BZ amended soils. Acid phosphomonoesterase activity was higher in the untreated soil than in the other soils; the alkaline phosphomonoesterase, phosphodiesterase and protease activities were increased by Z and BZ treatments, whereas B amendment had less positive effects. Genetic fingerprinting using Denaturing Gradient Gel Electrophoresis (DGGE) revealed shifts in the composition of eubacterial and fungal communities of the amended soils. Microbial species richness decreased rather than increased in the treated soils, regardless of reduced trace element availability and increased soil microbial biomass and activity.  相似文献   

11.
Abstract

Phosphorus (P) availability to plants in reclaimed alkali soils was the main objective of this study, which was also focused on P transformations, decrease in Olsen‐P content, and magnitude of P lost in leachate in course of amendment application and leaching. Liquid sodium bicarbonate (NaHCO3) was added to nonalkali soils to set up four ESP (exchangeable sodium percentage) levels (viz., 2.9, 25.0, 50.0, and 75.0), but actual ESP levels obtained were 2.9, 24.6, 51.2, and 75.3. Amendments (viz., gypsum and pyrites) and P treatments (viz., 0 and 50 mg P Kg?1) were mixed with dry, sieved soil before filling into PVC (polyvinyl chloride) drainage columns, which were then compacted to uniform bulk density and leached with deionized water for 30 days. Results indicated that the pH and electrical conductivity (EC) of the soils increased with increase in ESP level of the soil but decreased with amendment application. Phosphorus addition to alkali soils decreased the pH on day 30, but it could not affect the EC of the soils. Successive increase in the ESP level of the soil increased the pH and EC off the leachate. Gypsum‐amended soils exhibited lower pH and EC values than pyrite‐amended soils. The EC of the leachate decreased sharply with time in amended soils, but the pH decreased slowly. Phosphorus addition affected the leachate pH earlier than the soil pH. Cumulative volume of leachate decreased with increasing ESP levels, but it increased with amendment and phosphorus application. Leaching of P increased with increase in ESP levels, and the maximum cumulative loss of P was 11.2 mg Kg?1 in the 75.3 ESP soil. Cumulative P lost in the pyrite‐amended soils was higher than the gypsum‐amended soils. Phosphorus leaching in the gypsum‐amended soils stopped at day 10 and beyond, but it continued until day 30 in the pyrite‐amended soils. Part of the applied P in alkali soils was also lost along with the native P, whereas it was protected in the nonalkali soils. OlsenP increased with increasing ESP levels, and alkali soils invariably contained higher Olsen P than nonalkali soils. At day 30, alkali soils contained much higher Olsen P (12.6 mg Kg?1) than nonalkali soils (5.9 mg Kg?1). In general, there was a decrease in the Olsen P with both of the amendments, but it decreased more with pyrites than with gypsum. Phosphorus added through monopotassium phosphate (KH2PO4) remained extractable by Olsen's extractant up to day 30. Results also indicated that percent distribution of ammonium chloride (NH4Cl)‐P, calcium (Ca)‐P, and unknown P increased with rising ESP levels but iron (Fe)‐aluminum (Al)‐bound P and residual P decreased. Percent distribution of Ca‐P and unknown P exhibited an increase with time also. Unamended alkali soils contained more NH4Cl‐P than amended ones. Iron and Al‐ bound P and residual P increased more with pyrites, whereas formation of Ca‐P and unknown P was enhanced with gypsum. Applied P tended to convert more into NH4Cl‐P, Ca‐P, and residual P than to Fe‐Al‐bound P or unknown P fractions. Models developed to estimate Olsen P and P concentration in leachate, through pH or EC, have application value for P management in alkali soils that are leached after application of amendments.  相似文献   

12.
Abstract

A new soil extractant (H3A) with the ability to extract NH4, NO3, and P from soil was developed and tested against 32 soils, which varied greatly in clay content, organic carbon (C), and soil pH. The extractant (H3A) eliminates the need for separate phosphorus (P) extractants for acid and calcareous soils and maintains the extract pH, on average, within one unit of the soil pH. The extractant is composed of organic root exudates, lithium citrate, and two synthetic chelators (DTPA, EDTA). The new soil extractant was tested against Mehlich 3, Olsen, and water for extractable P, and 1 M KCl and water‐extractable NH4 and NO2/NO3. The pH of the extractant after adding soil, shaking, and filtration was measured for each soil sample (5 extractants×2 reps×32 soils=320 samples) and was shown to be highly influential on extractable P but has no effect on extractable NH4 or NO2/NO3. H3A was highly correlated with soil‐extractable inorganic N (NH4, NO2/NO3) from both water (r=0.98) and 1 M KCl (r=0.97), as well as being significantly correlated with water (r=0.71), Mehlich 3 (r=0.83), and Olsen (r=0.84) for extractable P.  相似文献   

13.
On irrigated agricultural soils from semi-arid and arid regions, ammonia (NH3) volatilization and nitrous oxide (N2O) emission can be a considerable source of N losses. This study was designed to test the capture of 15N loss as NH3 and N2O from previous and recent manure application using a sandy, calcareous soil from Oman amended one or two times with 15N labeled manure to elucidate microbial turnover processes under laboratory conditions. The system allowed to detect 15N enrichments in evolved N2O-N and NH3-N of up to 17% and 9%, respectively, and total N, K2SO4 extractable N and microbial N pools from previous and recent 15N labeled manure applications of up to 7%, 8%, and 15%. One time manured soil had higher cumulative N2O-N emissions (141 µg kg?1) than repeatedly manured soil with 43 µg kg?1 of which only 22% derived from recent manure application indicating a priming effect.  相似文献   

14.
The production of secondary metabolites by plants growing in natural populations is conditioned by environmental factors. In the present study, we have investigated the relationships among soil properties, micronutrients in soils and plants, and cardenolide production from wild Digitalis obscura (Scrophulariaceae) populations. Young and mature leaves and soil samples were collected in ten different populations, corresponding to three Mediterranean bioclimatic belts (Thermo‐, Meso‐, and Supramediterranean belts). Soil (total and EDTA‐extractable) and leaf micronutrients (Fe, Mn, Zn, and Cu), and leaf cardenolide accumulation have been determined. Significant negative correlations were observed between Fe, Mn or Zn concentration in leaves and soil pH, as well as between Fe or Mn in leaves and carbonate content of soils. Only EDTA‐extractable Mn was significantly correlated with Mn content in the plants. With regard to cardenolide content in leaves, this parameter was negatively correlated with Znleaf in young leaves and with Mnleaf in old leaves. Positively correlated, however, were Fe and cardenolide content in young leaves. The influence of environmental conditions and leaf micronutrient contents on cardenolide accumulation is discussed.  相似文献   

15.
Mineralization of organic matter and microbial activities in an intensively cultivated acid, N-rich peat soil planted with Salix sp. cv. aquatica were examined for 3 yr. The soil was amended with wood ash or NPK fertilizers providing N as ammonium nitrate or urea. The wood ash amendment (10 tons ha?1) increased soil pH from 4.6 to 5.5 and increased markedly all microbial activities measured, resulting in increased mineralization and N availability, and in loss of 9% total soil N during the first year. The addition of ammonium nitrate caused a corresponding though less pronounced increase in N mineralization. Cellulose decomposition increased in all amended soils, reaching rates 53–86% higher than in non-amended soil. Potential N2 fixation (C2H2 reduction) by free-living organisms was increased by the ash-amendment. Potential denitrification rates were positively correlated (r = 0.98) with the presence of water-soluble organic-C, which was more abundant in ash-amended and non-amended soils than in the soils fertilized with N.  相似文献   

16.
This study was conducted to determine the chemical composition of sericea lespedeza (Lespedeza cuneata) as well as soil and landscape characteristics that correlate with its invasion. Geographic Information Systems (GIS) and Light Detection and Ranging (LiDAR) were used to determine the pattern of invasion and to quantify landscape metrics. Sericea lespedeza was distributed on both sides of the lake in Pacolet and Madison soil map units (Fine, kaolinitic, thermic Typic Kanhapludults) on average slopes of 17.5%. It was common along roads and trails with a preferred mean canopy cover of <50%. Plant tissue analysis revealed statistically higher concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca) and sulfur (S) and selected micronutrients in leaves compared to stems and roots. Micronutrients copper (Cu), manganese (Mn) and iron (Fe) were significantly higher in stems and roots. Soil analysis results showed no statistical difference between control and invaded plots for measured soil chemistry parameters.  相似文献   

17.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

18.
Abstract

Changes in pH values during 12 weeks incubation in soils treated with acidified sawdust (ACD‐SD)‐treated soils ranged from 5.03 to 5.89, from 9.88 to 10.35 in soil treated with alkalized sawdust (ALK‐SD), and ranged from pH 6.88 to 7.35 in untreated sawdust‐amended soil. In unamended soil, pH values were 6.80 to 7.35. Bacterial populations over the 12 weeks in ACD‐SD‐treated soils increased from 5×106 to 167×106 colonies while bacterial populations in ALK‐SD‐treated soils increased from 2×106 to 54×106. Fungal populations increased from 6×104 to 11,333×104 colonies per gram soil in ACD‐SD treated soils over the 12 week incubation. Untreated sawdust and control soil did not result in any significant changes in the fungal populations.  相似文献   

19.
Abstract

The objective of this research was to assess the long‐term effects of broiler litter applications on soil phosphorus (P), copper (Cu), zinc (Zn), manganese (Mn), and arsenic (As) concentrations in Chesapeake Bay watershed Coastal Plain soils. Litter and soil samples were collected from 10 farms with more than 40 years of broiler production and from wooded sites adjacent to fields and were analyzed for P and metal contents. Averaged over farms, total P and metal concentrations in the litter were 12.8 g kg?1 P and 332, 350, 334, and 2.93 mg kg?1 Cu, Zn, Mn, and As, respectively. Surface (0–15 cm) soil pH values were greater than (5.7–6.4) the 0‐ to 15‐cm depth at wooded sites (3.5–4.3). Surface soil Bray 1 P values (149–796 mg kg?1) in amended fields were greater than wooded sites (4.4–17 mg kg?1). The 1N nitric acid (HNO3)–extractable metal concentrations were higher in amended soils than in wooded areas and were 7.7–32, 5.7–26, 12.3–71, and 0.6–3.0 mg kg?1 for Cu, Zn, Mn, and As, respectively, compared to 0.76–14, 4.6–22, 1.6–70, and 0.14–0.59 mg kg?1 for the same metals, respectively, in wooded areas. Results from this study demonstrated that long‐term broiler litter applications have altered the chemical properties of the Coastal Plain soils of the Maryland Eastern Shore. Metal concentrations were low in the surface layer of amended fields and typically decreased with depth. Phosphorus additions rather than metals are most likely to contribute to the degradation of the Chesapeake Bay watershed.  相似文献   

20.
Abstract

The 2M potassium chloride (KCl) extraction method used to measure soil nitrate (NO3 ‐N) concentrations in soils may introduce some artifacts caused by soil sampling, processing, and handling. Furthermore, this method provides soil NO3 ‐N concentrations for soil sampled at a particular time, whereas the dynamics of this anion in situ need to be better understood. In order to develop a reliable in situ method as an alternative, an anion exchange membrane (AEM) was tested for its ability to adsorb NO3 ‐N from a soil cropped to corn (Zea mays L.) and amended with manure or inorganic nitrogen (N). In a field study, we compared the amount of NO3 ‐N adsorbed on an AEM and extracted with the 2M KCl method. The AEM was calibrated in the laboratory and placed at 15‐cm soil depth for 2‐wk periods during the corn growing season. Nitrate adsorption on the AEM and KCl‐extractable NO3 ‐N were larger in the inorganic N treatment than in the manure or the control treatments throughout the growing season. The NO3 ‐N concentrations measured by the AEM method were correlated with NO3 ‐N extracted with 2M KCl (r2 = 0.78***), suggesting that the AEM method could be used to measure NO3 ‐N concentrations in agricultural soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号