首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
Release of reducing compounds by soybean (Glycine max (L.) Merr.] roots has been identified as an adaptive response mechanism to iron‐deficiency conditions which result in chlorosis. These compounds facilitate the conversion of Fe+3 to the metabolically active Fe+2 form, allowing for increased uptake by roots in solution culture experiments. Degree of chlorosis is closely associated with HCO3 concentration; however, the relationship between that ion and root reduction potential apparently has not been studied. We examined the effect of HCO3‐ on root reduction potential of ten commercially‐grown soybean cultivars known to differ in chlorosis expression in the field. Root reduction potential was measured spectrophotometrically at 594 nm on samples of nutrient solution containing reduced Fe+2 . Plants were grown with 5 mM NaHCO3 or in HCO3 ‐free solutions. Averaged over cultivars, 0.205 umoles Fe+3 were reduced in the HCO3 ‐free solutions while only 0.009 umoles Fe+3 were reduced in the solutions containing HCO3 . No significant differences were observed among cultivars for root reduction potential within either HCO3 treatment. Results from this study suggest that HCO3 may inhibit iron absorption by limiting the ability of roots to release reducing compounds which make available Fe+2 in the soil solution. This may partially explain the role of HCO3 in reducing chlorosis.  相似文献   

2.
Abstract

Nutrient solution experiments were conducted in the growth chamber to study the influence of rootstock, solution Ca/Mg ratios and solution nickel on K uptake. The experimental plants were one‐year‐old prune trees: ‘French’ prune (Prunus domestica L.) scions grafted on Myrobalan 29C (P. cerasifera Ehrh.), Marianna 2624 (P. cerasifera x P. munsoniana?) or Nemaguard (P. persica x P. davidiana) rootstocks. Ion uptake parameters Imax, Km, and Cmin were calculated from ion depletion measurements over a 6 to 10‐hr period.

With K solution concentrations initially adjusted to 100 μM, K uptake rates of Prunus rootstocks were constant down to approximately 20–30 μM, then declined. Rootstocks were able to deplete solution K to concentrations less than 1 μM. There were no significant differences in K uptake parameters among the rootstocks tested.

Varying solution Ca/Mg ratio from 2.75/1 to 1/4 (Ca + Mg = 3.75 mM) had no effect on K uptake. Potassium uptake rates of Myrobalan 29C rootstocks in the presence of 100 μM nickel were not significantly different from those in the absence of nickel. Rates of nickel uptake were significantly lower than those of K. After eight days of pretreatment in solutions adjusted daily to 100 μM Ni(NO3)2, prune leaves began to show signs of interveinal chlorosis. Potassium uptake by nickel pretreated trees was not significantly different from that by control trees. Results are discussed in relation to field observations of K deficiency in prune orchards.  相似文献   

3.
In vitro propagated plums of St. Julien GF 655–2 [Prunus insititia (L.)] (655–2), Damas GF 1869 [Prunus domestica (L.)] (D1869), and Clark Hill Redleaf [Prunus salicina (Until.) X Prunus cerasifera (Ehrh.)] (CHR), were grown in the greenhouse in nutrient solutions of 2, 6, 22, 66, 202, and 404 μM Ca for 96 days. 655–2 plants became severely chlorotic in Ca treatments of 66, 202, and 404 μM concentration after 86 days of growth. D1869 plants in 202 and 404 μM Ca exhibited slight interveinal chlorosis of new growth, while CHR exhibited no chlorosis at any Ca concentration. The best tissue nutrient indicator of chlorosis among rootstocks was foliar P/Fe and P/Zn ratios. 655–2 plants absorbed more P at higher Ca concentrations than did the other rootstock, resulting in the highest stem and leaf P/Fe, and P/Zn ratios. CHR plum may provide an easily propagated, chlorosis‐resistant rootstock for use on calcareous soils.  相似文献   

4.
Sodium carbonate added to nutrient solution in sand culture depressed the growth of tomatoes both by the influence of high pH and HCO3? causing chlorosis and by the effect of Na+. Foliar sprays of iron and manganese removed chlorosis and increased growth but did not remove the effect of Na. In a sandy soil Na2CO3 did not cause chlorosis but Na+ depressed yield. Chelated Fe and Mn in the soil solutions (up to 7.3 × 10?4 M Fe and 2.6 × 10?5 M Mn at pH 9.0) were sufficient to supply the crop needs as shown by a second sand culture experiment where plants were fed with nutrient solution plus extracted soil solution.  相似文献   

5.
A study was made of the influence of substrate on the root releases of hydrogen ions (H+) and bicarbonate ions (HCO3 ) by corn (Zea mays, cv.Dea) grown between the 5/6 leaf and the 9/10 leaf stage in two different growth media, siliceous or calcareous sand. Different nutrient solutions were supplied in separate experiments, but in all cases, nitrogen was in the form of nitrate (NOg"), and iron chelates were present in solution.

In siliceous sand the pH generally increased, but acidification appeared with low NO3 nutrition. Roots released H+ and HCO3 simultaneously, and these ions partially reacted to form H2CO3. The pH variations depended on the balance of the released ions and on the low buffer capacity in this slightly acidic pH range. The algebraic sum of the ion effluxes was approximately equal to the sum of the ion uptakes; no stoichiometric coupling between the total H+ effluxes and the NO3 or potassium (K+) uptakes was recorded.

In calcareous sand HCO3 was released by the roots, but the H+ seedling effluxes always acidified the solutions with regard to the reference solutions in calcareous sand without plants. Even though HCO3 was released in great quantities by plants, the pH of the solutions did not become alkaline because of the high buffer capacity of the solution in contact with the calcareous medium. In this environment the plants reacted to the high levels of HCO3 and showed symptoms of lime‐induced chlorosis. To overcome the poor physicochemical conditions, H+ was released from the corn roots, and this H+ efflux was correlated to the total alkalinity of the solution.  相似文献   

6.
A hypothesis has been presented and tested that bicarbonate (HCO3) and nitrate (NO3) are the most important anions inducing iron (Fe) chlorosis because these anions increase the pH of leaf apoplast which in turn depresses ferric‐iron [Fe(III]) reduction, and hence, the uptake of Fe into the symplasm. Experiments with young sunflower (Helianthus annuus) plants showed that nutrition with NO3 as the sole nitrogen (N) source induced chlorosis whereas ammonium nitrate (NH4NO3) did not. Monohydrogen carbonate (bicarbonate) also favoured the development of chlorosis. The degree of chlorosis was not related to the Fe concentration in the leaves. Both anion species, NO3 and HCO3, increased the pH of the leaf apoplast which was measured by means of the fluorescence dye 5‐carboxyfluorescein. A highly significant negative correlation between leaf apoplast pH and chlorophyll concentration in the leaves (r = ‐0.97) was found. Ferric‐Fe reduction in the apoplast—measured by means of ferrocene—provided evidence that a low leaf apoplast pH, obtained with ammonium (NH4) supply, favoured the reduction of Fe(III) as compared with a higher leaf apoplast pH obtained with NO3 supply. These results support the hypothesis tested.  相似文献   

7.
Tomato (Solanum lycopersicum Mill. cv. Belladona F1) plants were either self‐rooted, self‐grafted, or grafted onto the commercial rootstocks “Beaufort”, “He‐Man”, and “Resistar” and grown in a recirculating hydroponic system. Three nutrient solutions differing in NaCl‐salinity level (2.5, 5.0, and 7.5 dS m–1, corresponding to 0.3, 22, and 45 mM NaCl) were combined with the five grafting treatments in a two‐factorial (3 × 5) experimental design. At the control NaCl level (0.3 mM), fruit yield was not influenced by any of the grafting treatments. However, at low (22 mM NaCl) and moderate (45 mM NaCl) salinity levels, the nongrafted and the self‐grafted plants gave significantly lower yields than the plants grafted onto He‐Man. The plants grafted onto the other two rootstocks gave higher yields only in comparison with the nongrafted plants, and the differences were significant only at low (Beaufort) or moderate (Resistar) salinity. Yield differences between grafting treatments at low and moderate salinity arose from differences in fruit number per plant, while mean fruit weight was not influenced by grafting or the rootstock. NaCl salinity had no effect on the yield of plants grafted onto He‐Man but restricted the yield in all other grafting treatments due to reduction of the mean fruit weight. With respect to fruit quality, salinity enhanced the titratable acidity, the total soluble solids, and the ascorbic acid concentrations, while grafting and rootstocks had no effect on any quality characteristics. The leaf Na concentrations were significantly lower in plants grafted onto the three commercial rootstocks, while those of Cl were increased by grafting onto He‐Man but not altered by grafting onto Beaufort or Resistar in comparison with self‐grafted or nongrafted plants. Grafting onto the three tested commercial rootstocks significantly reduced the leaf Mg concentrations, resulting in clear Mg‐deficiency symptoms 19 weeks after planting.  相似文献   

8.
Response of five citrus rootstocks to iron deficiency   总被引:1,自引:1,他引:0  
Citrus established in calcareous soils can be affected by iron (Fe)‐deficiency chlorosis which limits yield and the farmers' income. The degree of deficiency depends on the rootstock, but the resistance to Fe chlorosis still requires further investigation. To study physiological parameters of citrus rootstocks that could be used to evaluate resistance to Fe deficiency, plants of Troyer citrange (Citrus sinensis L. Osb. × Poncitrus trifoliata L. Raf.), Carrizo citrange, Volkamer lemon (Citrus volkameriana Ten. & Pasq.), alemow (Citrus macrophylla Wester), and sour orange (Citrus aurantium L.) were grown in nutrient solutions with 0, 5, 10, 15, or 20 μM Fe. For each rootstock, plant height, root and shoot dry weights, and concentration of Fe in the shoots and roots were measured at the end of the experiment. Chlorophyll (CHL) concentration was estimated throughout the experimental period using a portable CHL meter (SPAD‐502) calibrated for each rootstock. At the end of the experiment, CHL fluorescence parameters were measured in each rootstock with a portable fluorimeter. Maximal and variable fluorescence values indicated that the photochemistry of Troyer was more affected by a low concentration of Fe in the nutrient solution than that of other rootstocks. To compare rootstocks, the absolute CHL concentration was converted into relative yield by employing a scaling divisor based on the maximum value of total CHL in plants without Fe‐deficiency symptoms. Exponential models were developed to determine the minimum Fe concentration in nutrient solution required to maintain leaf CHL at 50% of the maximum CHL concentration (IC50). Models were also developed to assess the period of time the rootstocks were able to grow under Fe‐stress conditions before they reached IC50. Volkamer lemon and sour orange needed the lowest Fe concentration (between 4 and 5 μM Fe) to maintain IC50, and Troyer citrange had the highest Fe requirement (14 μM Fe). Citrus macrophylla and Carrizo citrange required 7 and 9 μM of Fe, respectively. Similarly, Volkamer lemon and sour orange rootstocks withstood more days under total Fe depletion or with a low concentration of Fe (5 μM Fe in nutrient solution) until they reached IC50, compared to the other rootstocks. The approach used led to a classification of the rootstocks into three categories, regarding their internal tolerance to Fe chlorosis: resistance (sour orange and Volkamer lemon), intermediate resistance (C. macrophylla and Carrizo citrange), and reduced resistance (Troyer citrange).  相似文献   

9.
Abstract

In soilless production systems, water quality can have a major impact on the growth of plants. It has become evident that moderately alkaline water is a problem for tobacco transplant growers in some regions of Kentucky. To determine the level of bicarbonate (HCO3 ?) alkalinity, which is detrimental to burley tobacco transplants, and to better understand the effect of calcium (Ca) and the interaction of HCO3 ? and Ca on the growth of burley tobacco transplants grown in a float system, three levels of CaCl2 (25,75, and 125 mg L?1 Ca++) in factorial combination with five levels of HCO3 ? (0, 122, 244, 366, and 488 mg HCO3 ?L?1) were tested in nutrient solution culture. Four‐week‐old burley tobacco (Nicotiana tabacum L. var. KY‐907) seedlings were transplanted to 18‐L containers filled with aerated Hoagland's solution with the different levels of calcium and HCO3 ? for two weeks. High HCC3 ? alkalinity caused root system damage and plant growth inhibition, but did not induce iron (Fe) chlorosis. A significantly lower concentration of Zinc (Zn) was measured in the shoots as HCO3 ? levels in solution increased. In the presence of high calcium, plant growth was not significantly improved. No significant interaction of HCO3 ? and Ca on growth or nutrient uptake was observed in this study.  相似文献   

10.
ABSTRACT

Hydroponic culture solutions containing bicarbonate (HCO3 ?) may be used to screen crops such as soybeans (Glycine max) for resistance to iron (Fe) deficiency or chlorosis. Some successful methods use sodium bicarbonate (NaHCO3) in combination with elevated partial pressures of carbon dioxide (CO2) to buffer pH and elevate bicarbonate. Replacing NaHCO3 with magnesium bicarbonate [Mg(HCO3)2] as the form of bicarbonate alkalinity has the potential to produce culture solutions that simulate soil solutions more closely and eliminate any potential for specific sodium (Na) toxicities in sensitive plants. A modified screening solution based on Mg(HCO3)2-CO2 was tested against the successful NaHCO3-CO2 method, using three soybean varieties of known resistance to Fe-deficiency chlorosis. Alkalinity was 10 mM [added as NaHCO3 or Mg(HCO3)2], solutions were aerated with 3% CO2, and Fe was provided as FeDTPA (diethylenetriamine-pentaacetic acid) at 15 μM (low Fe) or 60 μM (adequate Fe). Leaf chlorophyll, visual chlorosis index, and leaf Fe concentration were closely related. Solutions based on NaHCO3 or Mg(HCO3)2 provided identical chlorosis-susceptibility rankings for the three cultivars.  相似文献   

11.
《Journal of plant nutrition》2013,36(10-11):2277-2294
Abstract

Several deciduous fruit tree species are affected by iron chlorosis when grown in calcareous soils and worldwide research on rootstock breeding and screening in relation to iron deficiency is carried out. For many years the goal of our department has been to investigate morphological and physiological aspects related to lime‐induced chlorosis, and to identify markers usable as tools for tolerance screening of clonal rootstocks. Experimental strategies using pot, hydroponic and in vitro culture have been used to understand if they are able to originate suitable indicators on developmental and biochemical changes resulting from iron deficiency. Results risen up from in vitro trials suggest that iron deficiency sensitive system should work in a divergent way from that of bicarbonate system. Physiological and morphological data highlight diverse syndromes and behaviors among the genotypes, probably reflecting properly perception, regulation, and activation of biological answer system to iron deficiency and bicarbonate. Recently, quince (Cydonia oblonga Mill.) minus‐ and plus‐variants have been obtained by in vitro somaclonal variation to clarify the agonistic relationship between bicarbonate and iron deficiency sensitive systems, that in turn can induce the activation of two specific gene expression pathways.  相似文献   

12.
A method has been developed to consistently induce increases in root ferric chelate reductase activity in the fruit tree rootstock GF 677 (Prunus amygdalopersica) grown under iron (Fe) deficiency. Clonal GF 677 plants were grown hydroponically in a growth chamber with 0 or 90 μM Fe(III)‐EDTA. Root ferric chelate reductase activity was measured in vivo using BPDS. Plants grown without Fe developed visible symptoms of chlorosis and had lower root ferric chelate reductase activities than those grown with Fe. Root ferric chelate reductase activities were 0.1–1.9 and 0.6–5.3 nmol of Fe reduced per gram of fresh mass and minute, respectively, in Fe‐deficient and sufficient plants. However, when plants grown without Fe for several days were resupplied with 180 μM of Fe(III)‐EDTA, FC‐R activities increased within 1 day. The FC‐R values after Fe resupply were 20‐fold higher than those found in Fe‐deficient plants and 5‐fold higher than those found in the Fe‐sufficient controls. After three days of the Fe treatments the FC‐R activities had decreased again to the control values. The reduction of Fe was localized at the subapical root zone. In the conditions used we have found no decreases of the nutrient solution pH values, indicating that this type of response is not strong enough to be detected in peach tree rootstocks. Also, no major changes in root morphology have been found in response to Fe deficiency. This ferric chelate reductase induction protocol may be used in screening assays to select rootstock genotypes tolerant to Fe chlorosis.  相似文献   

13.
Some formulations of phosphite (Phi) have been recommended as a source of P nutrition for several crops including citrus even though there are known negative effects of Phi on plant growth. Changes in plant growth and metabolism after Phi application should be reflected in altered nutrient‐use efficiency and leaf photosynthesis. We carried out a greenhouse study using seedlings of two contrasting citrus (Citrus spp.) rootstocks, Carrizo citrange (CC) and Smooth Flat Seville (SFS), growing in either aerated hydroponic culture or sterilized native sandy soil. Plants were subjected to four P treatments: No P (control, P0); 0.5 mM Pi (PO4‐P); 0.25 mM Pi + 0.25 mM Phi (Pi + Phi), or 0.5 mM Phi (Phi). Photosynthetic characteristics, concentrations of total P (Pt) and soluble PO4‐P or PO3‐P in leaves and roots, and plant growth were evaluated after 80–83 d P treatments. Overall, the Pi plants had the highest Pt (total P) and total plant dry weight while the P0 plants had the lowest Pt but highest total root length and root‐to‐shoot ratio. Leaf chlorophyll (SPAD readings) and net assimilation of CO2 (ACO2) of the P0 and Phi plants were similarly lower than those of Pi and Pi + Phi plants. Growth responses of the Pi + Phi treatment were intermediate between the Pi and Phi treatments. Although Phi increased Pt and soluble‐PO4‐P concentration in leaves and roots above the P0 treatment, this did not translate into increased plant growth. In fact, the Phi treatment had some phytotoxic symptoms, impaired P‐ and N‐utilization efficiency for biomass production as well as lower nutrient‐use efficiency in the photosynthetic process. Thus, these two rootstocks could not use Phi as a nutritional source of P.  相似文献   

14.
Plant growth, nutritional status, and proline content were investigated in non-grafted and grafted greenhouse tomato plants onto five rootstocks of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato, exposed to 0, 5, and 10 mM sodium bicarbonate (NaHCO3) to determine whether grafting could improve alkalinity tolerance of tomato. The leaf fresh mass of ungrafted and grafted tomato plants decreased significantly as NaHCO3 levels increased. Despite other rootstocks and ungrafted plants, alkalinity had no significant effect on stem and root fresh mass and shoot phosphorus (P), potassium (K) and magnesium (Mg) concentrations of datura grafted plants. The lowest solution pH and electrical conductivity (EC) values and the highest leaf proline content were observed in the plants grafted onto datura rootstock. Moreover, sodium (Na) concentration in shoots was lower in plants grafted onto datura rootstock than in other plants especially under high NaHCO3 levels. Overall, using datura rootstock improved alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

15.
The evaluation of soybean genotypes for resistance to iron deficiency through field experiments is complicated by variation in symptom expression. The objective of this study was to develop a tissue culture technique that could distinguish between Fe‐efficient and Fe‐inefficient genotypes. Ten soybean genotypes varying in sensitivity to iron deficiency were planted at 5 locations and rated based on chlorosis expression. For the lab evaluation, friable callus of the ten genotypes was placed on a 4MSII medium amended with 10 mM NaHCO3. Callus growth reduction relative to a control medium without NaHCO3 was recorded. Callus weight of all cultivars was affected by the addition of NaHCO3 however, significant differences in growth reduction among genotypes was observed. The high correlation between callus growth reduction and field chlorosis ratings observed (r2=0.92) and the fact that the expiant source plant can be grown to produce seed indicates that this technique would be useful in a soybean breeding program.  相似文献   

16.
Studies were conducted to determine the efficacy of K salts in alleviating lime‐induced chlorosis. Greenhouse studies using a Gibbon silt loam [fine‐silty, mixed (calcareous), mesic Typic Haplaquoll] and a 1: 1 mixture of Gibbon soil and washed sand were conducted with KCl, KNO3, K2SO4, K2HPO4, or KHCO3 applied at rates of 0, 250, and 500 mg K/kg soil. An FeEDDHA treatment was included for comparison. Similar studies were conducted at two field sites known to produce lime‐induced chlorosis. Potassium salts were applied at 0, 20, and 40 g K/m of row. In the greenhouse, plants treated with KCl, KNO3, and K2SO4 on Gibbon soil were less chlorotic than controls or plants treated with K2HPO4, or KHCO3. No K treatment totally alleviated chlorosis except FeEDDHA. Chlorophyll correlated positively with chlorosis rating. No relationship was found between leaf Fe uptake and chlorosis. Plants grown in soil/sand exhibited no chlorosis and had lower Fe uptake than plants grown in Gibbon soil. Thus chlorosis was not due strictly to low soil‐Fe availability or inadequate Fe uptake. Bicarbonate in the soil solutions of both growth media treated with KCl was lower than controls which may explain the reduced chlorosis associated with this treatment.

One field site showed positive effects of K treatments on chlorosis rating, chlorophyll concentration, and seed yield. No treatment was as effective as FeEDDHA in influencing plant growth or yield. Total leaf Fe concentration was unrelated to leaf chlorophyll concentration. Inorganic cation/anion ratios in the plant were from 4.4–8.4 which could cause net H+ efflux by the plant and alkalinization of plant tissues. One possibility is that H+ efflux solubilizes P in the rhizosphere, which after uptake could immobilize Fe in the plant. Application of KCl, KNO3, and K2SO4 generally lowered HCO3 content of the upper 15 cm of both soils. High bicarbonate could increase rhizosphere P availability and increase immobilization of Fe in the plant.  相似文献   

17.
This study investigated those soil factors related to iron (Fe) chlorosis between Fe status of peach leaves and some soil properties in the Antalya region of Turkey. The total Fe content of leaves was negatively correlated with soil pH and the organic matter content of the soils. Extractable Fe (by 1N HCl) was negatively correlated with the calcium carbonate (CaCO3) and bicarbonate (HCO3‐) content of the soils. In addition, both total‐ and extractable‐Fe contents of leaves were also negatively correlated with the copper (Cu) content of the soils. On the other hand, significant correlations were found among the Fe index, P/Fe ratio of leaves, and soil pH, phosphorus (P), zinc (Zn), and Cu content of the soils. It appears from these studies that high pH, and the CaCO3, HCO3‐, and Cu contents are effective soil factors affecting the availability of Fe and its uptake by the peach trees, and these soil factors were associated with severity of Fe chlorosis in the studied area.  相似文献   

18.
Two quince rootstocks for pear, clone MA and Ct.S.306, were screened to evaluate their threshold tolerance rate to lime‐induced chlorosis. Another important objective was to correlate the results of a chlorophyll analysis with observed chlorosis symptoms. The ron content in leaves was insufficient to determine the amount of iron available to the plant. The use of sodium bicarbonate (NaHCO3) in the hydroponic culture of pear was found to be the preferable over calcium carbonate (CaCO3) because of its higher solubility.  相似文献   

19.
Abstract

The iron (Fe) efficiency of soybean [Glycine max (L.) Merr.] genotypes generally has been evaluated in the field on calcareous soil. A nutrient‐solution system has been developed to permit evaluation of Fe efficiency throughout the year. The objectives of this study were to assess the effectiveness of nutrient‐solution tests for evaluating the Fe efficiency of soybean genotypes and to evaluate alternative nutrient‐solution techniques that could minimize the cost of labor and chemicals. Five bicarbonate (HCO3 ) concentrations and three solution‐change schedules were evaluated in a factorial arrangement. Eight soybean genotypes with a wide range of Fe efficiency were evaluated in each treatment and in replicated field tests on calcereous soil during 3 years. Rank correlation coefficients between mean chlorosis scores of genotypes in nutrient solution and field tests ranged from 0.81 to 0.91 for the three solution‐change schedules and from 0.85 to 0.89 for the five HCO3 concentrations. Replacing the solution every 4 d was not superior to replacing it only at each stage of plant development or not changing the solution throughout the test. A stepwise increase in HCO3 level at each stage of plant development was not superior to utilizing a constant level of HCO3 throughout the test. The most economical evaluation of the Fe efficiency of soybean genotypes in nutrient solution can be achieved with no change in the solution and one or more HCO3 levels that are held constant throughout the test.  相似文献   

20.
Identifying cultivars resistant to iron (Fe) deficiency chlorosis so prevalent in calcareous soils is a more economical solution than fertilizer application in field crops. The current method of screening for resistance using chlorosis ratings in field trials is time consuming and highly variable. Root Fe reduction successfully separated cultivars or rootstocks, varying widely in resistance, of soybean (Glycine max L.), peach (Prunus persica L.), and grape (Vitis spp.), but was unsuccessful in sub‐clover (Trifolium subterraneum L.). Dry bean (Phaseolus vulgaris L.) exhibits Fe deficiency chlorosis in calcareous soils and initiates Fe reduction by the roots in response to such stress. The resistance of 24 dry bean cultivars to Fe deficiency chlorosis was assessed by measuring and summing daily Fe reduction by the roots. The cultivars were grown both hydroponically in an environmental chamber in low Fe solutions (0.05 mg‐L‐1) and at three field sites in both 1995 and 1996. A significant relationship (P<0.01) between field chlorosis scores made 36 days after planting and root Fe reduction summations was observed for all sites in 1995 and 1996 (r = ‐0.42 to ‐0.71). The variability of chlorosis scores among sites, especially in 1996, points out the difficulty of using field chlorosis scores for screening. These results indicate that measurements of root Fe reduction can be used to predict resistance to Fe deficiency chlorosis in dry bean. Successful implementation of this technique should reduce if not eliminate field trials for screening resistance to Fe deficiency chlorosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号