首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ammonium:nitrate (NH4:NO3) ratio in nutrient solution on growth, photosynthesis (Pn), yield, and fruit quality attributes in hydroponically grown strawberry (Fragaria × ananassa Duch) cvs. ‘Camarosa’ and ‘Selva’ was evaluated. There were four nutrient solutions of differing NH4:NO3 ratios as follows: 0:100, 25:75, 50:50, and 75:25. Plants grown in solution with 75% NH4 had lower leaf fresh and dry weights and leaf area than those with 25% NH4 in both cultivars. High ratios of NH4 and NO3 in the solution always reduced the yield. The yield was increased by 38% and 84% in ‘Camarosa’ and ‘Selva,’ respectively, when the plants were grown in the 25NH4:75NO3 solution compared with plants grown in a higher NH4 ratio solution. The increased yield at the 25 NH4:75NO3 ratio was the result of the increase in fruit size, i.e., length and fresh weight of fruits. Plants grown in the 25NH4:75NO3 solution had the highest rate of Pn, while those grown in 75NH4:25NO3 solution had the lowest Pn rates in both cultivars. Increasing the NH4 ratio in the solution from 0 to 75% significantly reduced the calcium (Ca) concentration and postharvest life of the fruits in both cultivars. Both higher leaf area and Pn rate appeared to be the reason for the increased yield and plant growth in the 25:75 ratios of nitrogen (N). The results indicate the preference of strawberry plant growth toward a greater nitrate N form in a hydroponic solution. Therefore, a combination of two forms of N in an appropriate ratio (25NH4:75NO3) appears to be beneficial to plant growth, yield, and quality of strawberry fruits.  相似文献   

2.
不同铵硝比对菠菜生长、安全和营养品质的影响   总被引:5,自引:0,他引:5  
通过水培试验,研究了等氮条件下5种不同铵硝比对菠菜生长和品质的影响。结果表明:(1)从铵硝比100∶0到0∶100,菠菜地上部鲜重不断增加,铵硝比为0∶100时,菠菜的鲜重达最大值;但铵硝比25∶75和0∶100两个处理菠菜的干物重没有显著差异(p<0.05)。(2)随着铵硝比的降低,菠菜茎叶中硝酸盐、亚硝酸盐的含量均表现为线性增加;菠菜茎叶中可溶性草酸的含量和营养液中铵硝比之间呈现出二次曲线相关,在铵硝比为25∶75时,菠菜茎叶中草酸含量最低。适当增施铵态氮有利于降低菠菜硝酸盐、亚硝酸盐及草酸的含量。(3)增铵可以提高菠菜Vc含量,铵硝比为50∶50的处理菠菜Vc含量最高;随着铵硝比的下降,菠菜茎叶中可溶性糖的含量逐渐降低,而粗蛋白的含量则以铵硝比25∶75处理最高。  相似文献   

3.
利用NO-3 N∶NH 4 N为 10 0∶0、5 0∶5 0和 0∶10 0三个硝铵配比的营养液对 12个不结球小白菜品种进行水培试验。结果表明 :不同的硝铵配比对不同品种小白菜的生物量、叶绿素SPAD值、硝酸盐积累量等有着显著的影响 ,同一氮源培养下不同的小白菜品种间也表现出显著的差异 ;12个小白菜品种叶绿素SPAD值随营养液中的NH 4 N比例的增加而升高 ,两者间存在着显著的正相关 ;单株生物量除亮白叶 1号和五月慢在全硝培养中生物量较其他两种配比大外 ,其他 10个品种均在 5 0∶5 0硝铵营养液中表现最好 ;供试的 12个小白菜品种中有 9个品种的硝酸盐积累量随着NH 4 N比例的增加而下降 ,表明适当地配施铵态氮较纯硝营养液能获得更好的产量、更高的叶绿素SPAD值和较低的硝酸盐积累量。  相似文献   

4.
A pot experiment was carried out to study the growth and pungency of Allium fisutulosum grown in Perlite as affected by colonization by the arbuscular mycorrhizal (AM) fungi Glomus etunicatum, Glomus vesiforme, and by ammonium (NH+ 4 ):nitrate (NO? 3 ) ratios of 5:95, 50:50, and 95:5 in 4 mM solutions. Plants were grown in a greenhouse for 20 weeks and then harvested. In general, NH+ 4 :NO? 3 ratio of 50:50 supplied resulted in the highest shoot dry weight regardless of non-mycorrhizal and mycorrhizal plants while the effect of inoculation treatment on plant biomass was not significant. The plant sulfur (S) concentrations were usually higher in mycorrhizal plants than controls irrespective of nitrogen ratio and therefore inoculation with G. etunicatum increased the enzyme produced pyruvic acid (EPY) while inoculation with G. versiforme decreased the EPY compared with the non-mycorrhizal plants. In general, shoot pungency was lowest when NH+ 4 :NO? 3 ratio of 95:5 supplied irrespective of mycorrhizal treatment. Colonization by both AM fungi made a substantial contribution to spring onion sulfur nutrient status but show different way on flavor characteristics of host plants.  相似文献   

5.
通过水培试验研究了不同铵硝比的氮素营养和磷素营养对菠菜生长、氮素吸收及硝酸还原酶活性(NRA)和谷氨酰胺合成酶活性(GSA)的影响。结果表明:在供磷水平相同时,菠菜的生物量随着铵硝比的降低而降低,但铵硝比为25:75与0:100两个处理之间没有显著差异;在铵硝比相同时,随着营养液中磷含量的增加,菠菜的生物量随之增加。菠菜茎叶中硝酸盐的含量随着铵硝比和磷水平的降低而升高。不同铵硝比处理,菠菜含氮量没有明显差异,随着磷水平的提高,菠菜植株含氮量有升高的趋势,但各处理之间差异不显著;受到生物量显著差异的影响,菠菜植株中氮素累积量随着铵硝比的降低和磷素水平的增加而增加。在铵硝混合营养条件下,缺磷会显著抑制菠菜对铵态氮和硝态氮的吸收,且磷索缺乏对菠菜吸收硝态氮的抑制作用要大于对铵态氮吸收的抑制作用。铵硝比相同时,随着营养液中磷索供应量的增加,菠菜茎叶中NRA显著增加;但是营养液中铵硝比较高时,会显著抑制菠菜茎叶中NRA,而铵硝比较低时,则有利于提高菠菜的NRA。缺磷会严重抑制GSA;在磷素水平相同时,随着营养液中铵比例的增加,菠菜茎叶中GSA显著增加。为此,在一些硝酸盐含量较高的土壤上栽培蔬菜时,可以采取增施适量磷肥的方法,以降低叶菜的硝酸盐含量。  相似文献   

6.
《Journal of plant nutrition》2013,36(10):1561-1573
The interactions between NaCl and different NO3 ?NH4 + ratios were investigated. Tomato plants (Lycopersicon esculentum Mill.) were grown in a greenhouse, in 120L capacity containers filled with continuously aerated Hoagland nutrient solution. Treatments were added to observe the combined effect of two NaCl levels (30 and 60 mM) and three millimolar ratios of nitrate: ammonium (14:0, 12:2, 10:4) on growth, nutrition, and contents of chlorophyll and sugars. Saline treatments decreased growth, which was partly restored by NH4 + treatment. The leaf mineral composition showed a marked effect of nitrogen (N) source, while salinity only affected NO3 ? concentration. Changing the NO3 ?:NH4 + ratio from 14:0 to 12:2 and 10:4 produced progressive increases in the concentrations of iron (Fe), chlorophyll, and reducing sugars in leaves. Therefore, the deleterious effect of salinity on biomass production can be minimized by the use of nutrient solutions containing higher NH4 + concentrations, since this seemed to be correlated with increases in nitrogen assimilation and the levels of Fe and chlorophyll.  相似文献   

7.
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones.  相似文献   

8.
Studies on the effects of salinity and nitrogen (N) fertilization on ionic balance, biomass, and organic N production of annual ryegrass (Lolium multiflorum Lam.) were conducted. Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS#lbm‐1, and N in the form of sodium nitrate (NaNO3), ammonium nitrate (NH4NO3), or ammonium sulfate [(NH4)2SO4] ranging from 0.5 to 9.0 mM. Salinity increased the concentration of total inorganic cations (C) in plants and specifically sodium (Na) by more than 3‐fold higher in plants grown at high salinity as compared with plants at low salinity. Sodium (Na) concentration in roots was higher than in shoots irrespective of the salinity level, suggesting a restriction of Na transport from roots to shoots. The concentration of total inorganic anions (A) increased with salinity and when plants were supplied with nitrate (NO3), salinity increased the concentrations of NO3 and chloride (Cl) in plants. Increasing salinity and N concentration in the growth medium increased organic anions concentration in plants, estimated as the difference between C and A. The effect of different N sources on C‐A followed the order: NH4NO3 > NO3 > ammonium (NH4). The base of organic anions and inorganic ions with salinity contributed significantly to the osmotic potential of plants shoots and roots. Changes in C affected N and organic acids metabolism in plants, since C were highly correlated (p=0.0001) with C‐A and organic N (Norg) concentrations regardless of the salinity level or N source in the nutrient solutions. A high and positive linear dependency was found between Norg and C‐A in plants grown at high and low salinity levels and different N sources, pointing out the close relationship between Norg and organic anions on metabolism under these conditions. The amount of biomass produced was correlated positively with organic anion concentration in plants exposed to different salinity levels. Plant biomass increased with N concentration in the nutrient solution regardless of the salinity level applied. Biomass accumulation decreased while Norg concentration increased with salinity. Organic N content remained unaffected in plants exposed to salinity when grown in N less than 9.0 mM.  相似文献   

9.
Abstract

Broccoli (Brassica oleracea var. italica) plants were grown in the greenhouse and supplied continuously with 18 mM N in the following NH+ 4:NO? 3 ratios: 100:0, 75:25, 50:50, 25:75, 0:100. At commercial maturity, the plant characteristics and partitioning of nitrogen in xylem and phloem saps and in plant tissue were determined. Plants fed solely with NH+ 4 were stunted, exhibited signs of marginal necrosis on the lower leaves, and accumulated NH+ 4 in the foliage. The maximum yield and shortest harvest time, together with minimal NO? 3 and NH+ 4 accumulation were found at a ratio of 75:25. Ammonium concentrations in xylem sap decreased linearly with decreasing NH+ 4 portion in the nutrient solution, whereas the NO? 3 concentrations reached a maximum when NO? 3 constituted 50% of the N supply. The glutamate family dominated the amino acid composition of both xylem and phloem saps, but did not vary much with NH+ 4:NO? 3 ratio. It is suggested that the NH+ 4 concentration in xylem sap may be used to assess NH+ 4 vs NO? 3 utilization by broccoli grown under field conditions.  相似文献   

10.
Nitrogen is taken up by most plant species in the form of nitrate and ammonium. The objective of this study was to investigate the effect of different nitrogen forms on the growth of watermelon seedlings. Plants were grown in hydroponic culture with five nitrate (NO3?)/ammonium (NH4+) ratios (100/0, 75/25, 50/50, 25/75, 0/100). When the proportion of NH4+ was increased, the leaf number, leaf area, shoot height, net photosynthesis, biomass, and root growth were significantly decreased. Higher concentrations of nitrogen (N) and phosphorus (P) were observed when plants were supplied with mixed NO3? and NH4+ compared to NO3? or NH4+ alone, whereas the concentrations of potassium (K), calcium (Ca), and magnesium (Mg) were decreased with increasing NH4+. The microelements concentrations were generally increased with more NH4+ added. In addition, plants fed with higher NO3?/NH4+ ratios resulted in more minerals accumulation.  相似文献   

11.
Abstract

To evaluate the chance to reduce leaf NO3 content and to increase capability to use NH4‐N even in the absence of NO3‐N in the nutrient solution, plants of two Apiaceae species, fennel (Foeniculum vulgare Miller var. azoricum Mill. Thell.) and celery (Apium graveolens L. var. dulce Mill. Pers.), and of one species of Chenopodiaceae, Swiss chard (Beta vulgaris L. var. vulgaris), were hydroponically grown in a growth chamber with three different NH4‐N: NO3‐N (NH4: NO3) ratios (100: 0,50: 50, and 0: 100), but with the same total N level (4 mM) for 14 days. Swiss chard growth was inhibited by NH4 nutrition and reached the highest values with the NH4: NO3 ratio 0: 100. For all the morphological and yield features analyzed, fennel and celery resulted to be quite unresponsive to nitrogen (N) chemical form. Water use efficiency increased in Swiss chard and decreased in fennel and celery with the increase of NO3‐N percentage in the nutrient solution. The dependency of N uptake rate on shoot increment per unit root was more conspicuous for Swiss chard than fennel and celery. All species took more NO3‐N than NH4‐N when N was administered in mixed form. In the best conditions of N nutrition, Swiss chard accumulated NO3 in leaves in high concentration (3,809 mg kg"1 fresh mass). On average, fennel and celery accumulated 564 mg NO3 kg?1 fresh mass with the ratio NH4: NO3100: 0 and showed that by using NH4 produce having very low NO3 content can be obtained. By increasing NO3‐N percentage in the nutrient solution; NO3 leaf content of fennel and celery increased remarkably (7,802 mg kg?1 fresh mass with the ratio N H4: NO3 0: 100).  相似文献   

12.
Strawberry (Fragaria ananasa) plants were grown in hydroponics in a greenhouse, where the supply of different ammonium (NH4+): nitrate (NO3?) ratios, was investigated to reduce the negative effect of alkalinity in nutrient solutions. The experiment was arranged in factorial combination with two factors, NH4+:NO3? ratios (0%:100%, 25%:75%, 50%:50%, 75%:25%, and 100%:0%) and bicarbonate (0, 25, 50, and 75 mM; NaHCO3). Plants treated with increasing bicarbonate concentrations exhibited significantly inhibited growth. In plants treated with NH4+ and NO3? simultaneously, there was a counteraction of the bicarbonate-induced growth suppression. Sole NO3? application in the presence of high bicarbonate resulted in poor growth and plant death due to high alkalinity. The adverse effect of alkalinity on SPAD values and maximal quantum yield of PSII photochemistry (Fv/Fm) alleviated with increasing proportion of NH4+ in nutrient solutions. The results showed that fruit numbers and yield of strawberry increased with elevation of NH4+ in nutrient solutions.  相似文献   

13.
ABSTRACT

An experiment was conducted to study the effects of nitrate (NO3 ?) and ammonium (NH4 +) ratios in nutrient solutions on the growth and production of fruits, runners, and daughter plants of strawberry Fragaria x ananassa Duch., grown in a hydroponic system. Five treatments were applied, consisting of different proportions of NH4 + and NO3 ? in the nutrient solution. The NH4 +:NO3 ? ratios were: T0 = 0:4, T1 = 1:3, T2 = 2:2, T3 = 3:1, and T4 = 4:0, at a constant nitrogen (N) concentration of 4 mol m?3. Growth and morphogenesis were characterized by monitoring leaf-area increase, number of flowers and fruits per plant, and number of daughter plants of first and second generations. Nitrogen and carbon (C) content were measured at the end of the experiment in the organs of both mother and daughter plants. None of the variables related to the growth of the mother plant was affected by the treatments. However, the number of fruits increased with the proportion of NH4 + in the nutrient solution. The number of daughter plants produced was affected only at high NH4 + proportions, and their size (dry matter per daughter plant) and fertility (number of second-generation plants per first-generation plants) were reduced. The N or C content of the plants was not significantly affected by the treatments, but the C/N ratio in the crowns of mother plants was higher in treatments with 25% and 50% NH4 + in the nutrient solution.  相似文献   

14.
Ryegrass has increasingly been used in constructed wetlands for treatment of eutrophic wastewater. To properly match plant species with the characteristics of wastewater being treated, it is important to know the performance of plant species under different nitrate/ammonium (NO3 ?/NH4 +) ratios. We investigated ryegrass (Lolium perenne L.) dry matter (DM) production and N accumulation under five NO3 ?/NH4 + ratios (100/0, 75/25, 50/50, 25/75, 0/100) in a hydroponic system. The results showed that ryegrass total DM, shoot DM, root DM and nitrogen (N) accumulation were greater under NO3 ?/NH4 + ratios of 50/50 and 75/25 than under other NO3 ?/NH4 + ratios, indicating that ryegrass can be best used in constructed wetlands for treating wastewater with such NO3 ?/NH4 + ratios to achieve high biomass production and efficient removal of N. On the other hand, for treating wastewater with either NO3 ? or NH4 + dominate the inorganic N, other plant species that are more adapted to such conditions should be explored.  相似文献   

15.
We investigated the interacting effects of inorganic nitrogen and the main inorganic phosphorus form in dairy manure (dicalcium phosphate, CaHPO4) on growth, nutrient uptake, and rhizosphere pH of young maize plants. In a pot experiment, three levels of CaHPO4 (0, 167, and 500 mg P pot?1) were combined with nitrogen (637 mg N pot?1) applied at five NH4‐N : NO3‐N ratios (0 : 100, 25 : 75, 50 : 50, 75 : 25, and 100 : 0) and a nitrification inhibitor in a concentrated layer of a typical acid sandy soil from Denmark. 15N‐labeled NH4‐N was applied to differentiate the role of nitrification and to partition nitrogen uptake derived from NH4‐N. Among treatments including nitrogen, shoot biomass, rooting and phosphorus uptake were significantly higher at the five‐leaf stage when CaHPO4 was applied with NH4‐N : NO3‐N ratios of 50 : 50 and 75 : 25. In these treatments, rhizosphere pH dropped significantly in direct proportion with NH4‐N uptake. The fertilizers in the concentrated layer had a root‐inhibiting effect in treatments without phosphorus supply and in treatments with pure NO3‐N or NH4‐N supply. Increased nitrogen uptake as NH4‐N instead of NO3‐N reduced rhizosphere pH and enhanced acquisition of applied CaHPO4 by young maize plants, which may have positive implications for the enhanced utilization of manure phosphorus.  相似文献   

16.
《Journal of plant nutrition》2013,36(12):2503-2520
Abstract

Rooted cuttings of Rhododendron canescens “Brook” and Rhododendron austrinum were grown in sand culture with a modified Hoagland's solution under greenhouse conditions. The effect of varying ammonium:nitrate (NO3 ?:NH4 +) ratios (100:0, 75:25, 50:50, 25:75, 0:100) on growth, chlorophyll content, plant quality, and elemental tissue concentration were determined. With NO3 ? as the nitrogen (N) form, both azalea cultivars exhibited less vegetative growth, lower overall plant quality, with leaves showing visual chlorotic symptoms in comparison to plants receiving NH4 + as the N‐form. Leachate pH was highest with NO3 ? as the predominate N‐form and decreased significantly with each increment of NH4 +. With both azalea cultivars, N‐form significantly influenced uptake and utilization of essential plant nutrients. Leaf concentrations of N, potassium (K), calcium (Ca), sulfur (S), boron (B), and molybdenum (Mo) were highest with NO3 ?‐N. Leaf elemental concentrations of phosphorous (P), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) increased as NH4 + supplied more of the N‐ratio. Significant differences in Mg, Mn, and Zn were observed between species. Results from this study show that foliar N concentration is not an accurate indicator of plant growth response. Further investigations are needed to determine if foliarchlorosis and low growth rates observed with NO3 ? fed plants due to an Fe deficiency, to low nitrate reductase (NR) activity in the leaves, or to a combination of these factors.  相似文献   

17.
The influence of two N sources, NO3 alone and NH4+NO3 (2:1) in the external medium on fluxes of Cl, N, Na and K calculated from the total nutrient content per unit root dry weight, were investigated using cucumber (Cucumis sativus) seedlings grown in saline conditions. The N source affected the fluxes of the above ions very differently: (a) when only NO3 was added, the rate of Cl uptake was inhibited whereas the rate of K absorption was stimulated; and (b) by contrast, the presence of NH, in the N source enhanced Cl uptake and inhibited K uptake. The effect on the rates of Na and N uptake was more complex and salinity dependent. The potassium: sodium ratios (K:Na) and potassium: sodium selectivity ratio (S., ) in roots and shoots in relation with the treatments are also presented. Possible reasons of the N source effect on the processes implicated with the response of plants to salinity are also discussed.  相似文献   

18.
To evaluate chicory (Cichorium intybus L.) and rocket salad [Eruca vesicaria (L.) Cav.subsp. sativa (Mill.)] capability to use ammonium‐nitrogen (NH4‐N) even in the absence of nitrate‐nitrogen (NO3‐N) in the nutrient solution, and the chances they offer to reduce leaf NO3 content, cultivated rocket and two cultivars of chicory ('Frastagliata’, whose edible parts are leaves and stems, and ‘Clio’, a leaf hybrid) were hydroponically grown in a growth chamber. Three nutrient solutions with the same nitrogen (N) level (4 mM) but a different NH4‐N:NO3‐N (NH4:NO3) ratio (100:0, 50:50, and 0:100) were used. Rocket growth was inhibited by NH4 nutrition, while it reached the highest values with the NH4:NO3 ratio 50:50. Water and N‐use efficiencies increased in rocket with the increase of NO3‐N percentage in the nutrient solution. In the best conditions of N nutrition, however, rocket accumulated NO3 in leaves in a very high concentration (about 6,300 mg kg‐1 fresh mass). For all the morphological and yield features analyzed, chicory resulted to be quite unresponsive to N chemical forms, despite it took more NO3‐N than NH4‐N when N was administered in mixed form. By increasing NO3‐N percentage in the nutrient solution, NO3 leaf content increased (5,466 mg kg‐1 fresh mass with the ratio NH4:NO3 0:100). On average, both chicory cultivars accumulated 213 mg NO3 kg‐1 fresh mass with the ratio NH4:NO3 100:0 and, differently from rocket, they showed that by using NH4 produce can be obtained very low in NO3 content.  相似文献   

19.
The aim of this study was to investigate the biochemical responses and vase life of rose cut flowers under different ratios of NO3:NH4:urea in soilless culture. In this study, urea was used as the source of nitrogen (N) in solution cultures. For this purpose, an experiment was conducted as completely randomized design with seven ratios of N forms and three replications. The rooted cuttings of rose cv Dolce Vita were supplied with seven different ratios of NO3?:NH4+:urea (100:0:0, 70:15:15, 50:25:25, 50:0:50, 0:0:100, 50:50:0 and 0:100:0). Results showed that with the increase in urea and ammonium concentrations, the amounts of cuttings IAA, GA3, zeatin, ABA and polyamines contents decreased significantly. Plants fertigated with nutrient solution containing NO3?:NH4+:urea (50:25:25) had the highest concentrations of growth regulators, the highest stalk length and flower vase life. As the ammonium ratios in the nutrient solution increased, the flower vase life decreased significantly. It was concluded that using NO3?:NH4+:urea at the ratio of 50:25:25 had the highest effects on improving the rose cut flowers quality by affecting plants growth regulators and can be recommended for cut rose production in soilless culture systems.  相似文献   

20.
The objectives of this study were to determine the effects of nitrogen (N) forms and deficient and toxic rates of boron (B) on the growth, NO3 accumulation, membrane permeability, mineral nutrition, and nitrogen use efficiency (NUE) of bunch onion (Allium cepa L. var. Radar) plants. Therefore, 20% of NO3 in reference nutrient solution was replaced by NH4, urea, or mixed amino acids (AA). To each of these solutions 3, 30, or 300 mmol m?3 B was added. Fresh and dry weights were the same in the reference and mixed AA treatments, but NH4 and urea decreased these growth parameters as compared to the reference. Mixed AA decreased the NO3-N content while urea increased it, and NH4 treatment yielded similar NO3-N content as compared to the reference. The nitrogen content of plants was increased by NO3 replacement with either NH4 and, urea or mixed AA. At the 300 mmol m?3 B rate, B content of plants was decreased by NH4 and urea, but increased by the mixed AA treatment. Membrane permeability was increased by NH4?replacement of NO3. Nitrogen use efficiency was found the highest in the reference treatment. Nitrogen and NO3-N contents were increased by the 300 mmol m?3 B rate. Increasing B in nutrient solution increased the B contents of plants. Mixed AA treatment decreased the phosphorus (P) content of plants. Potassium (K) and chloride (Cl) contents of plants were decreased in the NH4 treatment where B was applied at the 3 mmol m?3 rate. These results suggest that bunch onion growers may reduce NO3 content in onion tops by partially replacing NO3 with amino acids without reducing yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号