首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Potassium humate (PH) is a promising natural resource to be utilized as an alternative for increasing crop production. A pot experiment was conducted during 2009 and 2010 to assess the efficacy of application of potassium humate (0, 5, and 10 mg kg?1 soil) alone and in combination with chemical fertilizers (75% and 100% recommended dose of nitrogen–phosphorus–potassium) on yield and nutrient availability patterns in soil at different growth stages of rice. Two doses of zinc, viz. 0 and 12.5 mg kg?1, were also applied. Sole and combined application of potassium humate with nitrogen–phosphorus–potassium (NPK) and zinc significantly (p < 0.05) improved the yield and availability of nitrogen, phosphorus, potassium, sulfur, zinc, and dehydrogenase activity in soil. Application of 10 mg kg?1 potassium humate along with 100% NPK and 12.5 mg kg?1 zinc sulfate proved significantly superior when compared to 75% and 100% of NPK alone.  相似文献   

2.
One of the strategies of the plants growing in phosphorus (P)-deficient environments is to exudate low-molecular-weight organic acids (LMWOA). Thus, we aimed to investigate the effect of LMWOA on phosphorus uptake of barley from either fertilizer or inherited soil phosphorus. The experiment was set up in full factorial arrangement in completely randomised design with two phosphorus (0 and 50 mg P kg?1), five organic acids, LMWOA (malic acid, oxalic acid, citric acid, acetic acid, ascorbic acid), and four organic acid rates (0, 10, 20, and 30 mmol kg?1). The effects of LMWOA on yield in descending order were: oxalic acid > ascorbic acid > malic acid > acetic acid > citric acid. The maximum P concentration in grain was obtained at 30 mmol kg?1 LMWOA treatments. As a result, it was found that oxalic acid was the most effective LMWOA in increasing nutrient uptake induced grain yield with and without phosphorous fertilizer application.  相似文献   

3.
A set of fertilizer experiments were conducted during three growing seasons with the aim of establishing sufficiency ranges and crop nutrient removals for Melissa officinalis L. Critical nutrient concentrations were determined by the Cate–Nelson method or by removing 10% of extreme high and low values, respectively if a positive response to a given nutrient was recorded or not. Sufficiency ranges for macro, micronutrients, and SPAD-readings were set as: 27.0–40.0 g N kg?1; 0.8–2.7 g P kg?1 (May–August); 1.5–3.8 g P kg?1 (September–November); 10.0–25.0 g K kg?1 (May–August); 18.0–32.0 g K kg?1 (September–November); 5.0–25.0 g Ca kg?1; 3.5–8.5 g Mg kg?1; 18–125 mg B kg?1; 5–25 mg Cu kg?1; 75–500 mg Fe kg?1; 20–300 mg Zn kg?1; 30–250 g Mn kg?1; 30–45 SPAD-units. These results will allow laboratories to use plant analysis as an important tool in improving the fertilizer recommendations for this species.  相似文献   

4.
Field experiments evaluated the effects of integrated nutrient management on symbiotic parameters, growth, nutrient accumulation, productivity and profitability of lentil (Lens culinaris Medikus). Application of recommended dose of nutrients (RDN, 12.5 kg N ha?1 + 40 kg P2O5 ha?1) + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers [Rhizobium + phosphate solubilizing bacteria (PSB) + plant growth promoting rhizobacteria (PGPR)] + 1.0 g ammonium molybdate kg?1 seed recorded the highest number & dry weight of nodules, leghaemoglobin content, root & shoot dry weight, plant height, number of pods plant?1 and 100-seed weight. The next best treatment was RDN + seed inoculation with biofertilizers + 1.0 g ammonium molybdate kg?1 seed. On the basis of mean of three-year data, the treatment of RDN + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers 1.0 g ammonium molybdate kg?1 seed proved the best in realizing the highest grain yield (34.0%), gross returns (34.0%) and net returns (54.8% higher over control). Nitrogen, phosphorus and potassium in the grains and straw were significantly improved where RDN was applied in combination with seed inoculation, basal application of ZnSO4 and seed treatment with 1 g ammonium molybdate than their single applications.  相似文献   

5.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation.  相似文献   

6.
The study was carried out between 2008 and 2010 on 8-year-old pomegranate (Punica granatum L.) trees cultivar ‘Kandhari Kabuli.’ The potential efficiency of bio-organics used along with chemical fertilizers on cropping behavior, quality attributes, nutrient availability, physico-chemical, and biological properties of soil were investigated. Bioorganic nutrient sources, namely, vermicompost (VC), biofertilizers (BF), farm yard manure (FYM), and green manure (GM), along with chemical fertilizers was evaluated in 13 different treatment combinations. Conjoint treatment application of VC at 20 kg tree?1, BF at 80 g tree?1, FYM at 20 kg tree?1, GM as sun hemp (Crotalaria juncea L.) along with 75% of the recommended dose of nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers significantly resulted in maximum fruit set (52.03%) and fruit yield (34.02 kg tree?1). All of the fruit quality characteristics were also improved significantly when compared to nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers. This superior combination also enhanced physical-chemical and biological properties of the rhizosphere soil. Microbial biomass of in terms of Pseudomonas, total culturable soil fungi, Azotobacter chroococcum, actinobacteria, and arbuscular mycorrhizal (AM) fungi improved 385.57, 60.26, 134.19, 168.02, and 39.87%, respectively, over control. This combination also resulted in considerable greater concentration of leaf macro-and micronutrients: N (2.63%), P (0.25%), K (1.57%), iron (Fe; 197.87 mg kg?1), copper (Cu; 14.65 mg kg?1), zinc (Zn; 59.36 mg kg?1), and manganese (Mn; 200.45 mg kg?1).  相似文献   

7.
The aim of the present study was the estimation of reference concentration values for plantain (Musa AAB subgroup plantain cv. Hartón) using the Compositional Nutrient Diagnosis system. Eighty-eight plants were sampled in 2000–2001 in commercial orchards in Sur del Lago de Maracaibo (Venezuela), their yields recorded, and nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and sodium (Na) concentrations determined in the foliar material. A yield cutoff of 16.98 kg·bunch?1, obtained after modeling the cumulative variance ratio function versus yield relationships with sigmoidal (Boltzmann) equations, was selected as the value above which plants were regarded as high yielders. Estimations from the high-yield group (N = 31) resulted in the following reference concentrations for macronutrients (in g·kg?1): 27.4 (N), 2.0 (P), 41.2 (K), 6.5 (Ca), 2.8 (Mg), 1.9 (S), and 0.5 (Na). For micronutrients the reference concentrations were (in mg·kg?1): 15.6 (Zn), 8.3 (Cu), 64.0 (Fe), and 76.3 (Mn).  相似文献   

8.
The diagnosis and recommendation integrated system (DRIS) approach was used to interpret nutrient analyses of leaf tissues from pomegranate cv. Bhagwa orchards grown in southwestern Maharashtra, India. The DRIS norms were established for three growth stages,viz. 50% flowering, fruit development and first harvesting of pomegranate. Various nutrient ratios were obtained from high-yielding population and were used to compute DRIS indices for diagnosing nutrient imbalances and their order of limitation to yield. Nutrient sufficiency ranges at 50% flowering derived from DRIS norms were 1.32–2.15% nitrogen (N), 0.18–0.24% phosphorus (P), 1.29–1.99% potassium (K), 0.64–1.20% calcium (Ca), 0.23–0.45% magnesium (Mg), 0.16–0.26% sulfur (S), 103.04–149.12 mg kg?1 iron (Fe), 39.60–72.85 mg kg?1 manganese (Mn), 15.99–26.10 mg kg?1 zinc (Zn), 6.16–9.32 mg kg?1 copper (Cu), 23.38–39.88 mg kg?1 boron (B) and 0.29–0.47 mg kg?1 molybdenum (Mo). Similarly, the sufficiency range at fruit development and first harvesting was developed for computing DRIS indices. The requirement of Fe, Mg, S, Zn and N by the pomegranate plant was higher at 50% flowering and fruit development stages. According to these DRIS-derived indices, 87.85, 73.83, 70.09, 69.16 and 65.42% orchards were deficient in Fe, S, Mg, Zn, and N, respectively, at 50% flowering, while 70.03, 66.36, 63.55, 61.68, and 68.22% orchards were found to be deficient in respective nutrients during the fruit development stage.  相似文献   

9.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

10.
Phospho-compost (PC) and poultry manure (PM) were evaluated in field experiments to diversify integrated nutrient management (INM) for rain-fed cotton. Seed cotton yield in the PC (2501–2579 kg ha?1) was similar to the recommended INM (2673 kg ha?1) treatment and was significantly better than nitrogen, phosphorus and potassium (100% NPK) (2130 kg ha?1) and farmers practice (FP) (1886 kg ha?1). Yield was lower in the PM (2476–2617 kg ha?1) than in the PC. Nutrient uptake was higher in all INM intervention plots due to an improvement in soil nutrient status compared with those receiving 100% NPK. Soil labile carbon values were higher in the INM treatments (333–452 mg kg?1), with a greater magnitude in the PC-amended plots (402–452 mg kg?1). Carbon management index (CMI) values were higher for the INM than treatments NPK and FP. Among INM interventions, PC plots had higher values than the PM.  相似文献   

11.
Abstract

A field trial was conducted during the short‐day period of 2004–2005 at Ona, Fl., to study the factorial effect of nitrogen (67, 90, and 134 kg N ha?1) and phosphorus (0, 5, 10, 20, and 40 kg P ha?1) rates on forage dry‐matter yield, quality, nutrient uptake, and leaf pigment concentration of limpograss (Hemarthria altissima). The N and P fertilizers were applied 45 days before each of two harvests. There was no interaction between N and P rates on any of the measured variables. Cool‐season forage yield increased curvilinearly from 137 to 350 kg ha?1 in winter and 237 to 1389 kg ha?1 in early spring, whereas crude protein (CP) concentration increased from 145 to 158 g kg?1, as P was increased from 0 to 40 kg ha?1, but yield and CP were not affected by N rate. There was a decreasing linear relationship between leaf concentration of anthocyanins and P rate of application such that forage obtained with 0 kg P ha?1 had 61% more leaf anthocyanins and purple pigmentation than with 40 kg P ha?1. There was no effect of N on anthocyanins content. It was concluded that increased level of leaf anthocyanins was due to the cumulative stress from cool weather and lower plant‐tissue P levels, which resulted in reduced growth and yield of limpograss. In cool weather, P played a critical role in controlling leaf purple pigmentation and forage yield.  相似文献   

12.
Plants are key sources to obtain drugs and related medical compounds. In the species Catharanthus roseus L.G. Don, ordinarily known as vinca, contains significant amounts of the alkaloid ajmalicine, which is used as an anti-hypertension drug. The aim of this research was to verify the effect of macro-nutrient deficiencies and boron over ajmalicine bioproduction in vinca roots. The experiment was performed in random blocks with eight treatments: complete, nitrogen deficient (-N), phosphorus deficient (-P), potassium deficient (-K), calcium deficient (-Ca), magnesium deficient (- Mg), sulfur deficient (-S) and boron deficient (-B), with four replicates. Seedlings were initially watered once a day with a complete solution and after 55 days after germination the treatments were started. Plants were collected 135 days after germination and evaluated in relation to root's dry matter, concentration of N, P, K, Ca, Mg, S, B and ajmalicine. Concentration of N, P, K, Ca, Mg, S and B within the root's dry matter of the vinca plants in deficient treatments were respectively of 62, 61, 93, 52, 70, 61 and 44% lower when compared with complete treatment. Potassium deficiency resulted in ajmalicine increment of 19% within roots, while deficiencies in N, P, Mg and S reduced ajmalicine concentration in 55, 33, 22 and 26% respectively when compared with complete treatment. Deficiencies in Ca and B had no significant effect in ajmalicine concentration within the plant roots. Within plants with the complete treatment, nutrient contents of ajmalicine from the roots’ dry matter were respectively of 18,5 g kg?1 N, 1,46 g kg?1 P, 13,5 g kg?1 K, 4,47 g kg?1 Ca, 1,43 g kg?1 Mg, 1,53 g kg?1 S, 61 mg kg?1 B and 1,28 mg g?1 of vitexin.  相似文献   

13.
Soil nutrient deficiencies can affect rice yield and grain mineral content wherever they occur, but an understanding of their effect on upland rice production in humid forest zone of West Africa is still limited. Therefore, a nutrient omission trial was conducted on foot slope soil in 2003, 2004 and 2005 in Côte d’Ivoire using rice variety WAB 56–104. The effect on rice grain yield (GY) and nutrient content of complete fertilizer (Fc with nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn)) was compared with Fc from which a specific nutrient was excluded (Fc – N, Fc – P, Fc – K, Fc – Ca, Fc – Mg and Fc – Zn). Before the trial, soil K (0.10 cmol kg?1) and Mg (0.20 cmol kg?1) contents were suitable, but available P-Bray I (4.2 mg kg?1) was found to be deficient. In course of the study, K, Mg and P deficiencies were observed. An antagonistic effect was observed between rice GY and grain concentrations in P, Mg and Ca for treatments Fc – Mg, Fc – P and Fc – K, respectively. Therefore, the use of P, K and Mg fertilizers is recommended for successive cropping seasons in order to rich stable and high rice yield while decreasing of grain concentrations in P, Mg and Ca can be observed.  相似文献   

14.
Field experiments were conducted to assess the ability of rhizobacterial inoculants to enhance growth and yield of maize. Performances of two phosphorus (P)-solubilizing bacteria in combination with a fertilizer mixture containing rock phosphate and triple super phosphate (PFM), and five diazotrophs combining either with 150 kg or 100 kg nitrogen (N) ha?1 supplied as urea were compared with non-inoculated-fertilized controls. Shoot P and N and soil available P and N contents were assessed and shoot biomass and ear weights were recorded at harvest. Pseudomonas cepacia resulted in significantly higher available P (51 mg P kg?1 soil), P accumulation (3.6 g kg?1 dry matter) and 13% increase in shoot biomass over control. Azospirillum sp. and dual inoculant comprising Enterobacter agglomerans + Agrobacterium radiobacter led to significantly higher available N (74–94 mg kg?1 soil) and 19 to 26% increase in shoot biomass over the control. However, inoculants did not increase the yield significantly.  相似文献   

15.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

16.
Field experiments were carried out to assess the effect of nutrient management on soil properties and available micronutrients using Soil Test Crop Response (STCR) based targeted yield equations under a six-year old pearl millet-wheat cropping system. After six years, results showed that soil pH and bulk density decreased, while cation exchange capacity and organic carbon increased in farmyard manure (FYM) as compared to control and nitrogen, phosphorus and potassium (NPK) treated plots in both surface and sub-surface soil depths. Higher values of available zinc (Zn) (1.54 mg kg?1) and iron (Fe) (5.68 mg kg?1) were maintained in FYM+NPK treated plots, while higher values of manganese (Mn) (6.16 mg kg?1) and copper (Cu) (1.07 mg kg?1) were found in FYM alone at surface soil as compared to sub-surface soil. This study demonstrated the importance of application of FYM in improving soil properties and maintaining micronutrients availability in soil and their uptake by wheat for sustainable crop production.  相似文献   

17.
Phosphorus (P) is required by crop plants for many physiological and biochemical functions. Knowledge of phosphorus uptake and its use by crop plants is essential for adequate management of this essential nutrient. A field experiment was conducted during four consecutive years to determine P uptake and use efficiency by upland rice, dry bean, corn and soybean grown in rotation on a Brazilian Oxisol. Plant samples were taken at different growth stages during the growth cycle of each crop for phosphorus analysis. Phosphorus concentration (content per unit dry matter) significantly decreased in a quadratic fashion with the advancement of plant age in four crop species. Phosphorus concentration was higher in legumes compared to cereals. Phosphorus uptake in shoot, however, significantly increased in an exponential quadratic fashion with the advancement of plant age of crop species. At harvest, P uptake was higher in grain compared to shoot, indicating importance of this element in improving crop yields. Phosphorus use efficiency (grain or straw yield per unit P uptake) was higher in cereals compared to legumes. The P use efficiency for grain production was 465 kg kg?1 for upland rice, 492 kg kg?1 for corn, 229 kg kg?1 for dry bean and 280 kg kg?1 for soybean. The higher P use efficiency in cereals was associated with higher yield of cereals compared to legume species.  相似文献   

18.
Aim of the present research is to investigate the effect of nitrogen (N) and phosphorus (P) on soil food webs (microbes, nematodes and microarthropods) trophic interactions in agriculture ecosystems. A complete randomized block design experiment of N and P fertilization was initiated in 2010 with four treatments: (1) P-addition, (2) N-addition, (3) NP-addition and (4) control. After 4 years of fertilization, compared with control, N-addition had a negative effect on microarthropods and clarify indirectly by significantly (< 0.05) increasing soil total nitrogen (0.37 g kg?1) and available nitrogen (20.03 mg kg?1). The reduction in microarthropods resulted significant (< 0.05) increase in bacterivores and fungivores feeding on bacteria and fungi, an example of top-down control. P-addition had indirect negative effects on microarthropods by means of significantly (< 0.05) increasing soil total phosphorus (0.62 g kg?1) and available phosphorus (24.17 mg kg?1), aggravated fungivores feeding on fungi and strengthened top-down control. NP-addition significantly (< 0.05) increased total microbial biomass, nematodes and microarthropods and resulted in bottom-up control. These results suggested that top-down effects were the dominant force in N- or P-addition treatments. NP-addition strengthened bottom-up control by enriching food resource. Unbalance fertilization could pose adverse on agricultural soil ecosystem and yield potential of crops.  相似文献   

19.
The influence of differing soil management practices on changes seen in soil organic carbon (SOC) content of loamy Haplic Luvisol was evaluated. The field experiment included two types of soil tillage: 1. conventional tillage (CT) and 2. reduced tillage (RT) and two treatments of fertilization: 1. crop residues with nitrogen, phosphorus, and potassium (NPK) fertilizers (PR+NPK) and 2. NPK fertilizers (NPK). The results of SOC fluctuated from 9.8 to 14.5 g kg?1 and the tillage systems employed and fertilization status did not have a statistically significant influence on SOC. The SOC content was higher in RT (12.4 ± 0.86 g kg?1) than in CT (12.2 ± 0.90 g kg?1). On average, there was a smaller higher value of SOC in PR+NPK (12.4 ± 1.02 g kg?1) than in NPK (12.3 ± 0.88 g kg?1). During a period of 18 years, reduced tillage and application of NPK fertilizers together with crop residues build up a SOC at an average speed of 7 and 16 mg kg?1 year?1, respectively, however conventional tillage and NPK fertilizer applications caused a SOC decline at an average speed of 104 and 40 mg kg?1 year?1, respectively.  相似文献   

20.
Field experiments were carried out during rainy (kharif) and winter (rabi) seasons (June–April) of 2008–2010 at Indian Agricultural Research Institute (IARI), New Delhi, to study the productivity, nutrients uptake, iron (Fe) use-efficiency and economics of aerobic rice-wheat cropping system as influenced by mulching and Fe nutrition. The highest yield attributes, grain and straw yields (5.41 tonnes ha?1 and 6.56 tonnes ha?1, respectively) and nutrient uptake in rice was recorded with transplanted and puddled rice (TPR) followed by aerobic rice with Sesbania aculeata mulch. However, residual effect of aerobic rice with wheat straw mulch was more pronounced on yield attributes, grain and straw yields (4.20 and 6.70 tonnes ha?1, respectively) and nutrient uptake in succeeding wheat and remained at par with aerobic rice with Sesbania mulch. Application of iron sulfate (FeSO4) at 50 kg ha?1 + 2 foliar sprays of 2% FeSO4 was found to be the best in terms of all the yield attributes, grain and straw yield (5.09 and 6.17 tonnes ha?1, respectively) and nutrient uptake and remained at par with 3 foliar sprays of 2% FeSO4. Although residual effect of iron application failed to increase the yield attributes, yield and nutrient uptake nitrogen, phosphorus and potassium (N, P, K) except Fe. The highest system productivity, nutrient uptake, gross returns, net returns, B: C ratio and lowest cost of cultivation were recorded with aerobic rice with wheat straw and Sesbania aculeata mulch. Application of FeSO4 at 50 kg ha?1 + two foliar sprays of 2% FeSO4 was found better in respect of system productivity, nutrient uptake, gross returns, net returns, B:C ratio and cost of cultivation in aerobic rice-wheat cropping system. The Fe use efficiency values viz. partial factor productivity (kg grain kg?1 Fe), agronomic efficiency (kg grain increased kg?1 Fe applied), agrophysiological efficiency (kg grain kg?1 Fe uptake), physiological efficiency (kg biomass kg?1 Fe uptake), apparent recovery (%) utilization efficiency and harvest index (%) of applied Fe were significantly affected due to methods of rice production and various Fe nutrition treatments in aerobic rice and aerobic rice-wheat cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号