首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Aquaponics is the combined culture of fish and plants in recirculating systems. This experiment was conducted to evaluate the production of basil out of the aquaponic system by irrigation of the plants with different ratios of hydroponic and aquaponic solutions. Basil seedlings were irrigated three times day?1 with 200 mL aquaponic-aquaponic-aquaponic (AAA), aquaponic-hydroponic-aquaponic (AHA), hydroponic-aquaponic-hydroponic (HAH), and hydroponic-hydroponic-hydroponic (HHH) solutions, respectively. Fresh and dry mass of shoots and roots of basil decreased at AAA treatment significantly. The plants were slightly less green at AHA treatments, and a visible chlorosis appeared in the leaves of AAA-treated plants. This chlorosis resulted lower net carbon dioxide (CO2) assimilation rate, transpiration rate, and stomatal conductance in AAA treatment. Iron (Fe), manganese (Mn), and potassium (K) concentrations in leaves decreased and zinc (Zn) concentration increased in higher ratios of aquaponic:hydroponic solution. Lower Fe, Mn, and K concentrations in aquaponic solution may be a main part of the reason for growth reduction.  相似文献   

3.
This experiment was conducted at Zahak Agricultural Research Station in the Sistan region in southeast Iran. A factorial design with three replications was used to determine the effects of zinc (Zn), iron (Fe), and manganese (Mn) applications on wheat yield, Zn, Fe, and Mn uptakes and concentrations in grains. Four levels of Zn [soil applications of 0, 40, and 80 kg ha?1 and foliar application of 0.5% zinc sulfate (ZnSO4) solution], two levels of iron sulfate (FeSO4; 0 and 1%) as foliar application, and two levels of Mn (0 and 0.5%) also as foliar application were used in this study. Results showed that the interactive effects of Zn and Mn were significant on the number of grains in each spike. The highest number of grains resulted from the application of 80 kg ZnSO4 ha?1 and foliar Mn. The interactive effects of Zn and Fe were significant on weight of 1000 grains. The highest weight of 1000 grains resulted from application of 80 kg Zn and foliar Fe. Application of 80 kg ZnSO4 ha?1 alone and 80 kg ZnSO4 ha?1 with foliar application of Mn significantly increased grain yield in 2003. The 2‐year results showed that foliar application of Zn increased Zn concentration and Fe concentration in grains 99% and 8%, respectively. Foliar application of Fe resulted in a 21% increase in Fe concentration and a 13% increase in Zn concentration in grains. The foliar application of Mn resulted in a 7% increased in Mn concentration in grains.  相似文献   

4.
Seedlings of sour orange (Citrus aurantium L.) and Carrizo citrange (C. sinensis L. cv. Washington navel x Poncirus trifoliata)] were grown in plastic pots containing a sand: perlite mixture and watered with a modified Hoagland No 2 nutrient solution throughout the experiment. Three-months-old plants were divided in three groups and sprayed with 0.018 M iron sulfate (FeSO4 .7H2O), 0.018 M manganese sulfate (MnSO4 .H2O), or deionized water. Two months later, plants were harvested and divided into top leaves that grown after the treatments, basal leaves that existed prior to the treatments, stems that partially came in contact with the spray, and roots. The manganese (Mn) spray resulted in a significant increase of Mn concentrations in top leaves, basal leaves, stems and roots of sour orange, and in top leaves, basal leaves, and stems of Carrizo citrange. The iron (Fe) spray significantly increased the concentrations of Fe in the stems and basal leaves of both genotypes. For both genotypes, transport of Mn from basal (sprayed) leaves to top (unsprayed) ones was found. However, the results of this experiment did not give any evidence neither for Mn translocation from sprayed tissues to roots nor for Fe transport from sprayed tissues to unsprayed ones (top leaves, roots). Mn and Fe were found to be relatively mobile and strictly immobile nutrients, respectively, within citrus plants after their foliar application as sulfate salts.  相似文献   

5.
This study was carried out in order to determine the effect of various manganese fertilizers [manganese sulfate (MnSO4.3H2O) (MS), 27% manganese (Mn) and manganese ethylenediaminetetraacetic acid (Mn-EDTA) (ME), 12% Mn], their doses (0, 6, 9, 12 mg Mn kg?1 for the soil and 0, 0.2, 0.3, 0.4% for the leaf) on yield and net return of dwarf bean. Field experiments were conducted in the randomized blocks split plot design with four replications under Konya ecological conditions in Turkey. Soil applications were made on bands as a single application at sowing whereas foliar applications (FA) were made at two times. Results of the field experiments showed the highest bean yields were significantly obtained by the fertilizer of ME-FA sprayed (243.80 and 257.74 kg da?1). For both years, the lowest yields were obtained by the MS-SA applications (166.97 and 180.60 kg da?1). The maximum net income was US $104.16 da?1 and US $156.06 da?1 by years.  相似文献   

6.
This study was carried out to investigate the effects of foliar sprays of different iron (Fe) sources on eggplant grown in alkaline aquaponic solutions. Four treatments were used, untreated control, foliar application of iron sulfate (FeSO4), ferric ethylenediaminetetraacetic acid (Fe-EDTA) and ferric ethylenediamine bis(2-hydroxyphenyl)acetic acid (Fe-EDDHA). The results showed that overall growth was significantly increased by foliar Fe application, and the highest values of vegetative growth parameters were recorded in plants treated with FeSO4. The Fe treatment led to a significant increase of shoot Fe concentration, and the highest Fe was observed in plants sprayed with FeSO4, compared to Fe-EDTA and Fe-EDDHA. The lowest chlorophyll content was observed in untreated plants. The highest SPAD index, maximal quantum yield of photosystem (PS II) photochemistry (Fv/Fm) and performance index (PI) values of young and old leaves were found with FeSO4 treatment. It is concluded that application of foliar Fe must be performed in the aquaponic system, to overcome Fe deficiencies in alkaline conditions.  相似文献   

7.
《Journal of plant nutrition》2013,36(4-5):613-622
The effectiveness on controlling Fe chlorosis in orange trees grown on calcareous soils was tested. The treatments were Fe(II) sulfate (500 mg Fe L?1), sulfuric acid (0.5 mM H2SO4), Fe(III)-chelate (Hampiron 654 GS, 120 mg Fe L?1) and distilled water as a control. A non-ionic wetting agent was used in all treatments. The use of frequent foliar sprays alleviated Fe chlorosis in orange trees. Sprays of Fe(II) sulfate increased the concentrations of chlorophyll, Fe and zinc in leaves and improved fruit size and quality compared to fruits of control trees. Sprays of Fe(III)-chelate also increased leaf chlorophyll and Fe concentrations and improved fruit quality, but did not increase fruit size. Sprays of sulfuric acid alone slightly increased leaf chlorophyll and Fe concentrations, without improving fruit size and quality. These results suggest that foliar sprays with Fe could help to avoid yield and quality losses caused by Fe chlorosis in citrus orchards. Furthermore, these treatments could be done with relatively cheap materials such as solutions containing Fe(II) sulfate.  相似文献   

8.
An aquaponic system was designed to investigate the effects of foliar applications of potassium (K) on mint, radish, parsley, and coriander growth and physiological characteristics. Plants were sprayed with 100 mL pot?1 of 0.5 g L?1 potassium sulfate (K2SO4) twice a week. Fresh and dry masses of shoot in all species were higher in K-treated plants. Potassium concentration increased with K spray in the shoots of all species. K-sprayed parsley accumulated a greater amount of Fe and chlorophyll in shoots. Values of SPAD index in all species decreased significantly in untreated plants. The highest Quantum Photosynthetic Yield (Fv/Fm) values were observed in coriander plants treated with K, which was attributed to higher SPAD value in these plants. Potassium application had a negative effect on sodium (Na) and positive effect on magnesium (Mg), manganese (Mn), and zinc (Zn) concentrations in plants. These results indicated that foliar spray of K can effectively alleviate nutrient deficiencies in leafy and root vegetables grown in aquaponics.  相似文献   

9.
Improving uptake, translocation, and utilization of foliar applied Fe and Zn is essential for increasing biomass and grain yield under deficient conditions. We compared the effect of foliar applied lipid-based Pheroid Fe- or Zn- nanoformulation, chelate and sulfate forms on biomass, nutrient uptake and mobilization in maize grown under Fe and Zn deficiency scenarios in hydroponic systems and field trials. Foliar spray of Fe-Pheroid nanoformulation resulted in complete re-greening. Partial and no re-greening of mature and young leaves, respectively, were observed under FeSO4 and Fe-HEDTA treatments. Foliar spray of Zn-Pheroid nanoformulation increased the Zn concentration of young leaves. In field trials, foliar spray of Fe- or Zn- chelate did not improve leaf Fe and Zn concentration or grain yield. Fe- and Zn-Pheroid nanoformulation improved the mobility of Fe and Zn within the plant. Field trials indicated that non-lipid-based formulation was not effective in amelioration of Fe- and Zn deficiency.  相似文献   

10.
Radioactively labeled iron (59Fe) was used to study differential uptake in sorghum plants in the recovery stage of chlorosis. Radio-labeled 59Fe was supplied through root feeding in nutrient solution experiment (48 hrs, pH 6.2) to non-chlorotic and chlorotic plants. Chlorotic plants were further treated with foliar spray [ferrous sulfate (FeSO4), FeSO4 + thiourea (TU), FeSO4 + citric acid (CA), FeSO4 + thioglycollic acid (TGA)] to study the uptake of radio-labeled 59Fe through root feeding during recovery process of chlorosis. Under iron deficiency, the differential uptake of 59Fe was markedly increased in leaves and stem of chlorotic control (-Fe) sorghum plants as compared to non-chlorotic control (+Fe) and foliar sprayed (FeSO4, FeSO4 + TU, FeSO4 + CA, and FeSO4 + TGA) plants. The lowest uptake of 59Fe was observed in younger leaves (24.33 nmol, g?1 fresh weight h?1) and stem (1.98 nmol, g?1 fresh weight h?1) of non-chlorotic control followed by foliar sprayed plants in comparison to chlorotic control, respectively. Similarly less 59Fe uptake was observed in the older leaves of FeSO4 + CA sprayed (21.70 nmol, g?1 fresh weight h?1) plants in comparison to chlorotic control (35.60 nmol, g?1 fresh weight h?1). The highest differential 59Fe uptake through nutrient medium was in the roots of plants, which were foliar sprayed with FeSO4 along with TU. The role of iron alone and along with citric acid and thiol compounds is discussed in recovery of chlorosis.  相似文献   

11.
This study investigated the effects of foliar spray of normal and nano-particles of iron sulfate (FeSO4) on the response of sunflower cultivars to salinity. Treatments included five cultivars (Alstar, Olsion, Yourflor, Hysun36 and Hysun33), two salinity levels (0 and 100 mM sodium chloride (NaCl)), and three levels of fertilizer application. Fertilizer treatments were the foliar application of normal and nano-particles of FeSO4. Foliar application of FeSO4 in either form increased leaf area, shoot dry weight, net carbon dioxide (CO2) assimilation rate (A), sub-stomatal CO2 concentration (Ci), chlorophyll content, Fv/Fm and iron (Fe) content and decreased sodium (Na) content in leaves. The extent of increase in chlorophyll a content by foliar spray of FeSO4 nano-particles was significantly greater than normal form. The results showed that the FeSO4 nano-particles increased biomass production of sunflower plants greater in comparison with normal form, although no significant difference was found between two forms.  相似文献   

12.
小麦和玉米中后期大量元素叶面施用的生物效应   总被引:4,自引:0,他引:4  
采用盆载和田间小区试验了小麦和玉米叶面10g/L尿素、10g/LKH2PO2和5.4g/LKCl及其配合用一些生理效应,叶面施用尿素,尤其是N、P和K的配合施用可显著延缓两种作物在拔节后其根系活力的下降,叶面追肥增强职责上作物功能叶的生理活性,在N,K或P+K三者之间,尿素的效果较佳。三者的配合施用是最大限度延长叶珠措施,作物后期喷尿素+KH2PO4能显著增加小麦和玉米的籽粒产量。叶面施用N、P、  相似文献   

13.
ABSTRACT

The effectiveness of nitrogen (N)+ zinc (Zn) soil and foliar fertilizer applications on growth, yield, and quality of apple (Malus domestic Borkh ‘Golden Delicious’) fruit was studied in the Zanjan province, Iran. There were eight treatments 1) control (no fertilizer), 2) soil applied N, 3) soil applied Zn, 4) soil applied N+Zn, 5) foliar applied N, 6) foliar applied Zn, 7) foliar applied N+Zn and 8) combined soil and foliar applied N+Zn. The N source was urea [CO(NH2)2, 46% N] applied at 276 N tree? 1 yr?1 and the Zn source was zinc sulfate (ZnSO4,7H20, 23% Zn) applied at 110 g Zn tree? 1 yr? 1. The soil treatments of N and Zn, were applied every two weeks during June through August (total of 6 times/year) in a 1 m radius around the tree trunk (drip line of trees). The foliar solutions of N (10 g l? 1 urea) and Zn [8 g l? 1 zinc sulfate (ZnSO4)] were sprayed at the rate of 10 L tree? 1 every two weeks at the same times as described for soil applications. The highest yield (49 kg tree? 1), and the heaviest fruits (202 g) were obtained in the soil and foliar combination of N+Zn treatment. The lowest yield (35 kg tree? 1), and the smallest fruits (175 g) were recorded in the control. Nitrogen, and to a lesser extent Zn, foliar application resulted in decreasing fruit quality (caused russeting, and lower soluble solid), but increasing N leaf and fruit concentrations (2.4% DW and 563 mg kg? 1, respectively). There were significant differences among yield and leaf mineral nutrient concentration in different treatments. But there was no significant difference between fruit mineral nutrient concentration (except N). Ratio of N/calcium (Ca), potassium (K)/Ca, and [magnesium (Mg)+K]/Ca in fruits were found suitable for fruit quality prediction. Combining the zinc sulfate with urea in the foliar applications increased the concentration of Zn from 0.7 to 1.5 mg per kg of apple tissue. Leaf N concentration varied during growth season. Foliar applied nutrient can be more efficient than soil applied, but a combination of soil and foliar applications is recommended for apple tree nutrient management.  相似文献   

14.
Citrus, especially K innow (Citrus deliciosa × Citrus nobilis), fruit yield and quality in Pakistan is not competitive with that of other countries which could be mainly attributed to the lack of good nutrient management for citrus orchards. The yield losses in this fruit crop occur mainly due to heavy fruit dropping. Experiments to overcome these problems were conducted at four different sites one each in Faisalabad, Toba Tek Singh, Jhang and Sargodha districts of Punjab, Pakistan. The soil and leaf chemical analysis showed severe deficiency of Zn and our pervious results have shown that soil amendment with potassium (K) at 75 K2O kg ha?1 improved the citrus fruit yield and quality at all selected sites. In the present experiments, effect of foliar application of Zn and K alone or in combination was studied on nutrient uptake, fruit yield, fruit dropping and juice quality. The fruit trees were pretreated with a selected K level of sulfate of potash (SOP) or muriate of potash (MOP), i.e., 75 kg K2O ha?1 along with recommended nitrogen (N) and phosphorus (P) doses. Zinc [Zn, 1% zinc sulfate (ZnSO4) solution], K [1% potassium sulfate (K2SO4) solution] and Zn + K (solution containing 0.5% each of ZnSO4 and K2SO4) were sprayed at the onset of spring and flush of leaves or flowers, fruit formation and at color initiation on fruit. Overall, application of Zn, K or Zn + K was effective in improving the nutrient uptake, yield and quality parameters of citrus fruit at all sites. Fruit dropping was also reduced by the foliar spray of Zn, K or Zn + K but the most promising results were recorded with foliar spray containing both Zn and K.  相似文献   

15.
Abstract

Experiments were conducted to examine whether the foliar application of zinc (Zn) could mitigate the adverse effects of heat stress on pakchoi plants. Two varieties of pakchoi (Aikangqing and Wuyueman) were foliar applied with ZnSO4·7H2O (0%, 0.02%, 0.05%, 0.10%, 0.20%, 0.40%, 0.60%, and 0.80%), and then subjected to two temperature levels (22°C/16°C, day/night; 40°C/30°C, day/night). Heat stress decreased the net photosynthetic rate (Pn) (50.65% and 62.14% for Aikangqing and Wuyueman, respectively), chlorophyll content, chlorophyll fluorescence ratio (Fv/Fm), and effective quantum yield of PSII photochemistry (ΦPSII) of the leaves. Foliar application of ZnSO4·7H2O (0.02%–0.40%) effectively alleviated the heat stress in pakchoi by enhancing shoot Zn concentration, superoxide dismutase (SOD) activity, chlorophyll content, Fv/Fm, and ΦPSII. Pn increased by 12.61%–46.19% and 45.73%–119.01% in Aikangqing and Wuyueman compared with those without Zn treatments, respectively. Fuzzy comprehensive evaluation and the extreme model showed that Aikangqing and Wuyueman treated with 0.1218%–0.1220% ZnSO4·7H2O (approximately 0.004?M Zn2+) and 0.2178%–0.2744% ZnSO4·7H2O (approximately 0.008?M Zn2+) exhibited the most heat resistance, respectively. Furthermore, Zn (0.02%–0.80% ZnSO4·7H2O) application had no significant effect on most physicochemical parameters under normal temperature, which only increased shoot Zn and SOD. The results suggest that additional Zn would be required to fully protect plant growth from heat stress. Foliar application enhanced Zn concentration in leaves, thereby maintaining the SOD activity and membrane stability and protecting photosynthesis against heat damage.  相似文献   

16.
Foliar application of fertilizers can guarantee the availability of nutrients to rice for obtaining higher yield. Rice responds favorably to macro- and micronutrients and the tolerance to salinity hazards improves by decreasing the N/S ratio. In this study, results showed that nutrient concentrations (g L?1) for rice are: nitrogen (N) 108.0, phosphorous (P2O5) 6, potassium (K2O) 81.0, calcium (CaO) 15.0, and magnesium (MgO) 6 g L?1; and for iron (Fe), manganese (Mn), zinc (Zn), cupper (Cu), boron (B), molybdenum (Mo) and silicon (Si) the recommended concentrations are 0.6, 0.45, 0.21, 0.06, 0.09, 0.0002 and 0.004 g L?1, respectively. A significant increase was recorded in number of panicles m?2, 1000 grain weight, biological yield and grain yield with foliar application of nutrients. Five foliar applications of nutrients resulted in maximum number of panicles m?2, grains panicle?1, 1000 grain weight and biological yield. It is concluded that five foliar applications of balanced amounts of fertilizers at the seedling stage (two sprays), tillering (single spray) and at panicle initiation and panicle differentiation (two sprays) helped in enhancing yield and yield components of rice. In this research, five foliar applications produced the smallest damaging effects of blast (Pyricularia oryzae) in rice.  相似文献   

17.
The objective of this experiment was to evaluate the effect of foliar fertilization of some micronutrients [i.e., manganese (Mn) and boron (B)] on reproductive yield and fatty acid concentrations of a standard sunflower hybrid (‘NuSun 636') irrigated with different concentrations of saline water made by dissolving sea salt. Reproductive yield showed a significant decrease with the increase in salt in the rooting medium. However, foliar sprays of boric acid (H3BO3) and manganese chloride (MnCl2) showed a significant increase in seed number, seed weight, and oil content of seeds in the nonsaline control, which persisted even under saline water irrigation. An increase under the MnCl2 spray was more than with H3BO3 irrespective of non saline or saline water irrigation. Increasing levels of salinity appeared to be responsible for a decrease in oleic monounsaturated fatty acid concentration and an increase in the linoleic polyunsaturated, palmitic and stearic saturated fatty acid content whereas no significant change was found in linolenic polyunsaturated fatty acid content. Foliar applications of H3BO3 and MnCl2 brought some beneficial alteration in fatty acid concentrations of sunflower. Foliar application of H3BO3 caused a significant increase in palmitic and stearic saturated fatty acids and linoleic polyunsaturated fatty acids in control as well as under saline conditions. Oleic monounsaturated fatty acid concentration showed a decline under H3BO3 treatment irrespective to nonsaline or saline conditions. Foliar applications of MnCl2 increased the concentration of palmitic saturated fatty acid and oleic monounsaturated fatty acid irrespective to the plant growth under non saline or saline conditions. While stearic saturated fatty acid, linoleic and linolenic polyunsaturated fatty acid decreased with the application of manganese as compared to the non sprayed control.  相似文献   

18.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   

19.
Salinity is one of the major environmental stressors which has deleterious effects on the growth, development, and yield of crops. Because of the gradual increase in soil and water salinity in the East Azarbaijan, Iran, Tanacetum balsamita L. cultivation in this region has always been associated with many problems. To study the effect of foliar spray of iron sulfate (FeSO4) (0, 750, and 1500 mg L?1) under sodium chloride (NaCl) salinity (0, 50, and 100 mM) on some physiological characteristics of Tanacetum balsamita L. plants, an experiment was conducted as a factorial based on complete randomized block design with three replications. Total soluble solids (TSS) and essential oil contents were significantly affected by the interaction effects of FeSO4 foliar application and salinity levels. The highest TSS and essential oil content were found in the plants under NaCl0 × FeSO4 1500 mg L?1 treatment combination. Leaf length, leaf fresh and dry weights were influenced by both Fe foliar application and salinity levels. Foliar application of iron (Fe) positively affected leaf length, leaves fresh and dry weights, root fresh and dry weights and peroxidase (POD) content, especially at 1500 mg L?1. Other traits such as leaf length, leaf fresh and dry weights, malondialdehyde (MDA), POD and catalase (CAT) contents were influenced by salinity levels. For POD, MDA, and CAT contents, the highest values were recorded with NaCl 50 and 100. The highest values of leaf length, leaf fresh and dry weights were found in the control plants.  相似文献   

20.
Poor zinc (Zn) nutrition of wheat is one of the main causes of poor human health in developing countries. A field experiment with no zinc and foliar zinc application (0.5% ZnSO4.7H2O) on bread wheat (8), durum wheat (3), and triticale (4) cultivars was conducted in a randomized block design with three replications in 2 years. The experimental soil texture was loamy sand with slightly alkalinity. The grain yields of bread wheat, triticale, and durum wheat cultivars increased from 43.6 to 56.4, 46.5 to 51.6, and 49.4 to 53.5 t ha?1, respectively, with foliar application of 0.5% ZnSO4.7H2O. The highest grain yield was recorded by PBW 550 (wheat), TL 2942 (triticale), and PDW 291 (durum), which was 5.22, 4.24, and 4.56% and significantly higher over no zinc. Foliar zinc application increased zinc in bread wheat, triticale, and durum wheat cultivars grains varying from 31.0 to 63.0, 29.3 to 61.8, and 30.2 to 62.4?mg kg?1, respectively. So, agronomic biofortification is the best way which enriching the wheat grains with zinc for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号