首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water cooled system for controlling air temperature in photosynthesis assimilation chamber is cumbersome and requires a water tight system consisting of a double‐jacketed chamber. Manipulation of temperature control from one air temperature to another requires the adjustment of water bath temperatures. A simplified system for the air temperature control of the assimilation chamber and heat removal under high photon flux density would be desirable. An effective thermoelectric module cooling and heating system for a photosynthesis chamber was developed and evaluated for wheat (Triticum aestivum L.), sorghum [Sorghum bicolor (L.) Moench], and soybean [Glycine max (L.) Merr.] Air temperature variations within a chamber were maintained within 0.4°C, 0.9°C, and 0.3°C for the wheat, sorghum, and soybean chambers, respectively. The thermoelectric module system is simple and provides sufficient cooling and heating capacities to maintain chamber air temperature from 20°C to 30°C with 1100 μmol m‐2 s‐1 photon flux density for photosynthesis and dark respiration studies.

Air temperature within a photosynthesis chamber during photosynthesis in plant nutrition studies is one of the important environmental parameters that must be controlled. Due to excessive heat under the relatively high photon flux density used in photosynthesis measurements, air temperature has been traditionally cooled and controlled by passing chilled water through double walled water‐jacket chambers3,5,7,8,12,13. Although the water cooled double‐jacket system has been successful in controlling temperature, maintaining water tight systems has been a problem. To alleviate some of the problems of a double‐jacketed system, air was cooled by passing over a water‐cooled radiator placed below the leaf4,11 . Under conditions of relatively high photon flux densities (1100 ymol m‐2 s‐1), water‐cooled systems do not provide sufficient cooling capacity to maintain 25°C or less air temperature. Mauney, et al.6 reported photosynthetic data obtained from cuvettes that were electrically cooled by the Peltier device, but no details of the system were provided. In later studies9,10,14, Peltier‐cooled systems appeared as a simple alternative to water‐cooled systems. This paper reports the details on an effective thermoelectric module cooling and heating system based on the Peltier principle for photosynthesis chambers.  相似文献   

2.
Abstract

Soybean (Glycine max (L.) Merr. cv Bragg) plants were grown in the greenhouse using a low‐Mn Leefield sand amended with 0, 2.5, 5, 20 and 50 yg Mn/g. The plants were inoculated and were primarily dependent on symbiotically fixed N. Measurements of DTPA‐extractable soil Mn, soil pH, leaf tissue Mn, top weight, top N content, and nodule weight, volume and number were made at 27, 42, 56, 63 and 69 days after planting. The DTPA extrac‐tant was a good predictor of leaf tissue Mn giving a highly significant (P = 0.01) overall correlation coefficient of 0.704 for this comparison. Because of an unexpected decline in soil pH from 6.8 to 6.0 and an associated increase in DTPA‐extractable Mn from 0.14 to 0.24 yg/g during preparation and handling prior to the first harvest time, Mn in the leaf tissue of the controls was never less than 21 yg/g. Since this concentration of Mn is above the deficient level, no significant responses in top growth, nitrogen fixation or nodule measurements were obtained from the addition of low rates of Mn. The highest Mn rate was only mildly toxic in terms of top growth and top N content, producing leaf tissue having Mn concentrations ranging from 171 to 180 yg/g at the last three harvest periods.  相似文献   

3.
The balance between leaf senescence, induced by phosphorus deficiency, and grain growth was examined in wheat plants grown in sand with high (control) and low phosphorus (low‐P) nutrition. Foliar applications of P were made prior to anthesis and at early and mid grain development. Low‐P plants were also given an additional dose of P via the roots at mid grain development.

Foliar applications of P had no effect on leaf function (net CO2 exchange rate), or grain development in control plants. However, P applied to the flag leaf of low‐P plants delayed senescence and thus increased leaf area duration, but this did not result in a significant increase in grain yield per ear. Phosphorus applied to the ear surface (the glumes) of low‐P plants increased the concentration of P in the grain, but did not increase the number of cells per grain, or the grain yield per ear. The late application of P via the roots also delayed senescence in low‐P plants, but did not cause an increase in yield.

These experiments indicate that grain growth in low‐P plants is not limited by the level of supply of photosynthate, or the availability of P during the actual period of grain development. Phosphorus translocated to the grain late in plant development is used inefficiently in plants that are adequately supplied with phosphorus and in plants suffering from P deficiency.  相似文献   

4.
机械损伤对烤烟植株氮素吸收及体内烟碱含量的影响   总被引:7,自引:0,他引:7  
采用砂培和营养液培养方法,研究了在营养生长阶段切除顶芽和叶片损伤对烟株生长、体内烟碱浓度、氮浓度及吸氮量的影响。结果表明,切除顶芽导致烟株体内烟碱浓度和含量显著增加。叶片损伤也能增加体内的烟碱浓度,且损伤二次比损伤一次的效果更为明显,说明叶面损伤对烟株体内烟碱合成的影响具有累积效应。但叶面损伤对烟株体内烟碱合成的影响小于打顶处理。切除顶芽和叶面损伤对烟株体内的氮浓度及吸氮量均无显著影响,但显著提高了烟株体内单位氮素产生烟碱的能力。试验结果还表明,机械损伤刺激烟株体内烟碱的合成,烟碱增加与氮素吸收无直接关系。  相似文献   

5.
Abstract

Extract

Studies on the root system which are essential to understand the nutrient and water uptake by plant, are very difficult because the root system in the soil can not be observed directly unlike the shoot system. Even basic parameters, such as root length and root surface area cannot be measured easily.  相似文献   

6.
Since large areas of agricultural fields in the world become compacted every year, much effort has been made to reduce the adverse effects of soil compaction on plant growth. Mechanical methods to control soil compaction may be laborious and expensive; however, biological methods such as using arbuscular mycorrhiza (AM) may be more useful, economically and environmentally. The objectives of this study were: (1) to evaluate the effects of soil compaction on wheat (Triticum aestivum L.) growth, and (2) to evaluate if using AM of different origin can reduce the stressful effects of soil compaction on wheat growth. Unsterilized and sterilized soils, different levels of compaction and three species of arbuscular mycorrhiza were applied in four replicates. The experiments were conducted in the Soil and Water Research Institute, Karaj, Iran. Soil physical and chemical properties were determined. The AM increased wheat growth in both soils at different levels of soil compaction in both experiments. For root, shoot (P=0.1) and grain (P=0.05) dry weights increases were significant. AM enhanced root growth more than shoot growth under compaction (AM resulted in significant increase in root/shoot ratios, P=0.1). Due to its unique characteristics, AM may reduce the stressful effects of soil compaction on wheat growth, though its effectiveness may decrease with increasing compaction.  相似文献   

7.
In recent years the use of biowaste compost (BC) as a soil amendment is of increasing interest. The aim of the experiment was to investigate the influence of different fertilization systems: biowaste compost, annual average of 32 Mg ha—1 BC (fresh matter) and mineral fertilizer (83:52:95 kg ha—1 NPK fertilizer) on the nutrient and heavy metal contents of soil and plants. Soil samples (1997) and harvest products (1996—1998) from a field trial (initiated 1992) were analyzed for K, Mg, P, Cu, Mn, Mo, Zn, Cd, Ni, and Pb. The five‐year fertilization with composted biowaste did not influence the total contents of Cd, Mn, Mo, and Ni in soil. The total soil contents of Zn and Pb were significantly higher in soils of the BC treatment than in the unfertilized control. Both fertilized plots tended to have higher Cu and Zn contents in harvest products than the unfertilized control. The mineral fertilization inhibited the Mo uptake by plants. In 1998 the mineral fertilization led to higher, and the biowaste compost application to lower, Cd contents in potato tubers as compared to the control.  相似文献   

8.
9.
Abstract

Enhancing the phosphorus (P) use efficiency is critical for the sustainable cultivation of winter wheat. In this study, we investigated the effects of P fertilization level on plant P-uptake and agronomic traits under deficit irrigation, by using two wheat cultivars sharing contrasting water responses (i.e., Jimai 585 and Shimai 22). The high P level treatment (P120) improved plant biomass and P accumulation at each growth stage, grain yields, P remobilization amount to grain (PRA), P remobilization rate (PRR), and P contribution rate (PRR) of the cultivars with respect to the low P treatments (i.e., P90 and P60). Compared with Jimai 585, a cultivar acclimated to affluent water, the drought tolerant cultivar Shimai 22 exhibited similar behaviors on plant biomass, P-associated traits at each stage, and agronomic traits at maturity under P120. However, Shimai 22 was more improvement on P-associated and agronomic traits than Jimai 585 under P60 and P90. P contents were increased whereas moisture contents decreased in soil profile treated by P120 with respect to those by P60. Meanwhile, the soil profile cultivated by Shimai 22 displayed reduced moisture and P contents under P deprivation (i.e., P90 and P60) respect to that by Jimai 585, suggesting the contribution of more consumption of soil P and water storage to improved agronomic traits of Shimai 22. Together, our investigation suggested that suitable P input management positively mediates plant P-associated traits and grain formation capacity under deficit irrigation by improving supply and internal translocation of P across tissues in winter wheat plants.  相似文献   

10.
Silicon (Si), although not considered essential, has beneficial effects on plant growth which are mostly associated with the ability to accumulate amorphous (phytogenic) Si, e.g., as phytoliths. Phytogenic Si is the most active Si pool in the soil–plant system because of its great surface‐to‐volume ratio, amorphous structure, and high water solubility. Despite the high abundance of Si in terrestrial biogeosystems and its importance, e.g., for the global C cycle, little is known about Si fluxes between soil and plants and Si pools used by plants. This study aims at elucidating the contribution of various soil Si pools to Si uptake by wheat. As pH affects dissolution of Si pools and Si uptake by plants, the effect of pH (4.5 and 7) was evaluated. Wheat was grown on Si‐free pellets mixed with one of the following Si pools: quartz sand (crystalline), anorthite powder (crystalline), or silica gel (amorphous). Silicon content was measured in aboveground biomass, roots, and soil solution 4 times in intervals of 7 d. At pH 4.5, plants grew best on anorthite, but pH did not significantly affect Si‐uptake rates. Total Si contents in plant biomass were significantly higher in the silica‐gel treatment compared to all other treatments, with up to 26 mg g–1 in aboveground biomass and up to 17 mg g–1 in roots. Thus, Si uptake depends on the conversion of Si into plant‐available silicic acid. This conversion occurs too slowly for crystalline Si phases, therefore Si uptake from treatments with quartz sand and anorthite did not differ from the control. For plants grown on silica gel, real Si‐uptake rates were higher than the theoretical value calculated based on water transpiration. This implies that Si uptake by wheat is driven not only by passive water flux but also by active transporters, depending on Si concentration in the aqueous phase, thus on type of Si pool. These results show that Si uptake by plants as well as plant growth are significantly affected by the type of Si pool and factors controlling its solubility.  相似文献   

11.
The objective of this study was to investigate whether oxyanionic phosphate (P) and sulfate (S) fertilizer management could influence selenium (Se) uptake by wheat (Triticum aestivum) in medium and high Se areas. Field studies were established at two locations for two growing seasons in central South Dakota, USA. Phosphate fertilizer was applied using three different methods (banded with seed, surface-broadcasted in the fall, or surface-broadcasted in the spring) using six different P rates. Sulfate fertilizers were broadcasted at four rates in the fall. Selenium concentration in wheat grain was significantly influenced by the interaction of P application methods and rates, but it was dependent on location. Grain Se concentration decreased in high Se availability soil when P fertilizer was applied, due to the dilution effect. Grain Se concentration and uptake was significantly decreased as S applications increased due to the competition effect, but the depression was apparent in high Se availability soil. The results from this study showed that P and S fertilizer management can influence Se level in wheat grain grown in naturally high Se areas, even though overall grain Se level was strongly associated with location variation.  相似文献   

12.
An experiment was performed to evaluate the regulatory effects of varied amounts of sulfur (S) on selenium (Se) uptake and distribution within wheat (Triticum aestivum L.) in response to selenite (SeO32-). The results showed that an appropriate amount of SeO32- (≤5 mg kg?1) improved the agronomic traits of wheat, and the addition of S significantly alleviated wheat growth inhibition caused by excessive SeO32- (≥15 mg kg?1). The Se concentration of different fractions in wheat grain showed a tendency of alkali-soluble Se > alcohol-soluble Se > water-soluble Se > salt-soluble Se. The use of S significantly reduced Se accumulation in each wheat part when the addition of SeO32- was ≤15 mg kg?1, but the Se distribution ratio of various wheat parts was not influenced by S supply. Overall, the application of S fertilizer is an effective technical measure to promote wheat production safety in high-Se areas.  相似文献   

13.
硅对小麦生长及其抗氧化酶系统的影响   总被引:16,自引:0,他引:16  
本文研究了基施硅营养对小麦分蘖期的生长状况、叶片类脂脂肪酸组成及抗氧化酶系统的影响。结果显示 ,施硅促进了小麦的生长 ;降低了膜脂过氧化程度 ,提高了叶片类脂脂肪酸的不饱和度。但施硅处理对超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶 (APX)活性没有影响 ,却使过氧化物酶 (POD)与过氧化氢酶 (CAT )活性下降 ,暗示POD和CAT具备在较低活力水平上高效清除H2 O2 等强氧化剂的可能性。  相似文献   

14.
The Tibetan triple-spikelet wheat (TTSW) (Triticum aestivum L. concv. tripletum nom. nud.) is a landrace of common wheat collected from Tibet, China. It possesses a genetic stable character of triple-spikelets, and produces more than 50 spikelets and about 150 florets per spike. The plant has normal number of tillers, normal length of spikes, and well-developed seeds. The inheritance of the triple-spikelet trait in TTSW was genetically analyzed. The results indicate that the triple-spikelet character in TTSW is controlled by two recessive genes. Therefore, we suggest designating the genes controlling this character of triple-spikelets as Ts1 and Ts2. These genes could be used for increasing the number of spikelets per spike for high-yield breeding in common wheat.  相似文献   

15.
植物根际钾富集及钾分布的基因型差异   总被引:2,自引:0,他引:2  
Plant genotypic difference of potassium-enrichment capability and potassium (K) distribution at root-soil interface of different plant genotypes were studied by using seven plant species and eight varieties of tobacco (Nicotiana tabacum L.). The results indicated that K enrichment capability was: Ethiopian guizotia (Guizotia abyssinica Cass.)>feather cockscomb (Celosia argentea L.)>alligator alternanthera (Alternanthera philoxeroides (Mart.) Griseb.)> tobacco>sesbania (Sesbania cannabina (Retz.) Pers.)>wheat (Triticum aestivum L.)>broadbean (Vicia faba L.). Ethiopian guizotia showed very high K-enrichment capability at different soil K levels, and the K content in its dry matter was over 110 mg kg-1 when soil K was fully supplied, and about 60 mg kg-1 when no K fertilizer was applied. For alligator alternanthera, the capability to accumulate K was closely related with its growth medium. When it was grown on soils, both the K content and K uptake rate of the plant were similar to those of tobacco. Evident K depletion was observed in the rhizosphere of all plant species, and the depletion rate was related to the capability of K enrichment of plant.  相似文献   

16.
Abstract

This study reports the relationship between N levels (22, 56 and 112 kg/ha) and its effect on yield and protein quality for five cultivars of soft winter wheat (Triticum aestivum L. em. Thell). The objective was to determine the relationship of amino acid content and total protein at various levels of N. The 56 and 112 kg N/ha rates resulted in higher wheat yields than the 22 kg N rate over the 3 yr. mean. A cultivar x N level interaction for yield occurred when certain cultivars did not respond to higher N rates in 1972. Total seed protein increased with each increase in If. Increasing N levels generally resulted in a higher amlno acid content of the seed. Cultivar effects were found for 6 of the 17 amino acids (threonine, serine, glutamic acid, proline, glycine and lysine) indicating that cultivars differed in total amino acid content. Cultivars Arthur and Holley gave the greatest response (percentage amino acid) to N application. Coker 68–8 was intermediate in response while Coker 68–15 and Blueboy showed small inconsistent responses to H application.  相似文献   

17.
Abstract

Field experiments were carried out on three representative soils, to evaluate the effect of various starter fertilizers, together with different rates of band placed phosphorus (P), on nutrient uptake and yield of spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.). The starter fertilizers were placed in the immediate vicinity of the seed, while the band placed P was placed at about 5 cm below the seeds and spaced at 25 cm between alternate seed rows. As starter fertilizer, monoammonium phosphate (MAP), calcium nitrate (CAN), ammonium nitrate (AN) and triple superphosphate (P20) were compared. In both species, effects of starter fertilizer on P uptake were most marked early in the growing season. At GS 13 application of 20 kg P ha?1 as MAP increased the P uptake by 50% in barley and by 35% in wheat, compared to no seed-placed nutrients. For grain, the increase in P content was 8% for both species. The higher P uptake at GS 13 was supported by observations of higher plant vigour in the treatments with either P20 or MAP as starter fertilizer. The use of N only as starter fertilizer did not increase the vigour of the plants. Band placement of P also gave more vigorous plants in spring barley. The grain yield increased on the silty clay loam and on the silt soil when starter fertilizer was applied, especially with the use of MAP. Smaller and non-significant yield differences were found when starter fertilizer was used on the loam soil. No delay or reduction of emergence was observed with starter fertilizer. Therefore, on soils where root growth or nutrient uptake becomes limited during the first weeks after sowing, application of starter fertilizer is recommended in Norway for both spring barley and spring wheat. Crops grown on silty soils seem to have an especially high demand for easily available P given as starter fertilizer.  相似文献   

18.
ABSTRACT

We investigated the effect of histidine (His) and Zn deficiency on H+-ATPase activity and H+ release from wheat roots. Two bread wheat (Triticum aestivum L. cvs. Kavir and Back Cross Roshan) were grown in a nutrient solution for four weeks before being transferred to treatment solutions consisting of two concentrations of His (0 and 50 µM) and two concentrations of Zn (0 and 10 μM). The Zn-only and the Zn+His treatments were observed to release more H+ in the root media than did the control ones, with the highest achieved under the Zn+His treatment which was roughly 2.1 times higher than that under the control conditions. The H+ release from wheat roots increased slightly but significantly in the presence of only His when compared with the control solutions. The hydrolytic and transport activities of H+-ATPase were affected by both Zn deficiency and His supply. In both cultivars, application of Zn and His resulted in a higher hydrolytic activity of H+-ATPase when compared with the control solutions. The highest hydrolytic activity of H+-ATPase in the root plasma membrane vesicles was achieved with the Zn+His treatment. The ‘Back Cross Roshan’ exhibited a higher (PM) H+-ATPase activity and H+ pumping than did ‘Kavir’.  相似文献   

19.
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.  相似文献   

20.
为研究不同紫苏品种种子在萌发期对干旱胁迫的响应,给评价紫苏种子的抗旱性和栽培管理提供理论依据,以紫苏品种TS003号和贵苏4号为试料,采用不同浓度的PEG-6000溶液模拟干旱胁迫,分别测定2个品种的种子发芽率、发芽势、发芽指数、活力指数、胚根长和鲜重等指标。结果表明,不同浓度的PEG-6000干旱胁迫处理对TS003号、贵苏4号的发芽率、发芽势、发芽指数、活力指数、胚根长和鲜重均产生抑制作用,均随着PEG-6000浓度的增加呈下降趋势。与蒸馏水空白对照相比,在低浓度PEG-6000(3%、6%)干旱胁迫下,各指标值下降幅度差异不显著(P > 0.05),PEG-6000浓度在12%及以上时显著下降(P < 0.05),尤其在PEG-6000浓度为24%(重度干旱胁迫)处理下紫苏种子发芽完全受到抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号