首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants grown in salt‐affected soils may suffer from limited available water, ion toxicity, and essential plant nutrient deficiency, leading to reduced growth. The present experiment was initiated to evaluate how salinity and soil zinc (Zn) fertilization would affects growth and chemical and biochemical composition of broad bean grown in a calcareous soil low in available Zn. The broad bean was subjected to five sodium chloride (NaCl) levels (0, 10, 20, 30, and 40 m mol kg?1 soil) and three Zn rates [0, 5, and 10 mg kg?1 as Zn sulfate (ZnSO4) or Zn ethylenediaminetetraaceticacid (EDTA)] under greenhouse conditions. The experiment was arranged in a factorial manner in a completely randomized design with three replications. Sodium chloride significantly decreased shoot dry weight, leaf area, and chlorophyll concentration, whereas Zn treatment strongly increased these plant growth parameters. The suppressing effect of soil salinity on the shoot dry weight and leaf area were alleviated by soil Zn fertilization, but the stimulating effect became less pronounced at higher NaCl levels. Moreover, rice seedlings treated with ZnSO4 produced more shoot dry weight and had greater leaf area and chlorophyll concentration than those treated with Zn EDTA. In the present study, plant chloride and sodium accumulations were significantly increased and those of potassium (K), calcium (Ca), and magnesium (Mg) strongly decreased as NaCl concentrations in the soil were increased. Moreover, changes in rice shoot Cl?, Na+, and K+ concentrations were primarily affected by the changes in NaCl rate and to a lesser degree were related to Zn levels. The concentrations of Cl? and Na+ associated with 50% shoot growth suppression were greater with Zn‐treated plants than untreated ones, suggesting that Zn fertilization might increase the plant tolerance to high Cl? and Na+ accumulations in rice shoot. Zinc application markedly increased Zn concentration of broad bean shoots, whereas plants grown on NaCl‐treated soil contained significantly less Zn than those grown on NaCl‐untreated soil. Our study showed a consistent increase in praline content and a significant decrease in reducing sugar concentration with increasing salinity and Zn rates. However, Zn‐treated broad bean contained less proline and reducing sugars than Zn‐untreated plants, and the depressing impact of applied Zn as Zn EDTA on reducing sugar concentration was greater than that of ZnSO4. In conclusion, it appears that when broad bean is to be grown in salt‐affected soils, it is highly advisable to supply plants with adequate available Zn.  相似文献   

2.
Abstract

A salt-sensitive cucumber cultivar “Jinchun No. 2” (Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25?mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl? contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100?mmol?L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl? contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl? contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.  相似文献   

3.
Olive trees (Olea europaea L.) are considered moderately tolerant to salinity, with clear differences found among cultivars. One‐year‐old self‐rooted olive plants of the Croatian cv. Oblica and Italian cv. Leccino were grown for 90 d in nutrient solutions containing 0, 66, or 166 mM NaCl, respectively. The shoot length and the number of nodes and leaves for both cultivars were not affected by salinity up to 66 mM NaCl. However, at 166 mM NaCl, growth of Leccino was reduced earlier and to a higher extent than growth of Oblica. After 10 d of exposure to 66 and 166 mM NaCl, increased activity of superoxide dismutase (SOD) was observed in Leccino, whereas there was almost no response in Oblica. Reduced SOD activity in Leccino at 166 mM NaCl was observed after prolonged stress (90 d), whereas in Oblica SOD was increased at 66 mM compared to control or 166 mM NaCl. Electrolyte and K+ leakage were increased and relative water content decreased as NaCl concentration increased with similar intensity of response measured in both cultivars. Oblica exhibited an ability to keep a higher K+ : Na+ ratio at all salinity levels compared to Leccino, but since no difference was found in leaf K+ concentration, this was mainly achieved by less Na+ ions reaching the younger leaves. The antioxidative system represents a component of the complex olive salt‐tolerance mechanism, and it seems that the role of SOD in protection from oxidative stress depends on sodium accumulation in leaves.  相似文献   

4.
The physiology of NaCl induced stress was studied in two prop species, cowpea and 4 cultivars of tobacco one of which (Jayashree) is salt sensitive. It was found that the growth of all the cvs of tobacco was reduced by the presence of NaCl (100 mH) in the nutrient medium. While the fresh wt per unit area of the leaves of salt‐tolerant tobacco cv. I and PV‐7 (Nicotiana tabacum L.) and MPS‐219 (N. rustica L.) was increased’ significantly, it was decreased in the salt‐sensitive Jayashree. The dry wt per unit leaf area was decreased much more in I, PV‐7 and J than in NPS‐219. The total chlorophyll was reduced in all and more so in Jayashree.

The relative turgidity % was found to decrease in the primary leaves of cowpea (Vigna unguiculata L.) in the first 6 days of treatment with 100 mM NaCl in the nutrient medium while the decrease was less significant in the first and and second trifoliate leaves, showing that there was readjustment with growth of the plant to salinity. The 14C fixation in the leaf disks of cowpea grown in NaCl was much less than in the control plants. The studies reveal that there is a general reduction in the growth of both tobacco and cowpea following NaCl treatment and this effect is due to a decrease in the total chlorophyll and a reduced rate of photosynthesis.  相似文献   

5.
In the first phase of salt stress, growth of plants is impaired mainly by osmotic stress. To elucidate the effect of NaCl salinity on elongation growth of maize leaves in the first phase of salt stress, we investigated the effect of NaCl on gene expression and activity of the plasmalemma H+ ATPase of elongating leaves of maize (Zea mays L.). Treatment of maize plants with 125 mM NaCl for 3 d decreased leaf growth relative to control plants (1 mM NaCl). Whereas H+ ATPase hydrolytic activity was unaffected, the ability of the H+ ATPase to establish a pH gradient was strongly reduced. Total mRNA of plasmalemma H+ ATPase was slightly increased. However, mRNA of the ATPase isoform MHA1 was significantly reduced and ATPase isoform MHA4 was strongly increased at the mRNA level. Synthesis of total H+ ATPase protein was unchanged as revealed by western blot. The results indicate that reduced pumping of H+ ATPase in leaf plasmalemma under salt stress may be caused by a switch to gene expression of the specific isoform MHA4, which shows inferior H+‐pumping efficiency in comparison to isoforms expressed under control conditions. We propose that reduced H+ pumping of plasmalemma H+ ATPase is involved in the reduction of leaf growth of maize during the first phase of salt stress.  相似文献   

6.
Olive (Olea europaea L cv. Leccino and cv. Frantoio) plants grown in aeroponic cultivation system were supplied with Hoagland solutions containing 0 and 150 mM NaCl for 4 weeks. Sodium (Na+), chloride (Cl), and potassium (K+) concentration was measued on 15‐day‐old leaves and K+/Na+ selectivity ratio was calculated. Plant water relations were estimated on the same leaves by measuring leaf bulk water and osmotic potentials, and by calculating leaf turgor pressure. Root and leaf tissues were also analysed for lipid composition, estimating free sterol (FS), glycolipid (GL) and phospholipd (PL) content. The salt‐sensitive Leccino accumulated more Na+ and Cl in the leaves and showed a lower K+/Na+ selectivity ratio than the salt‐tolerant Frantoio. The FS/PL ratio and the content of GL (namely mono‐galactosyldiglyceride, MGDG) in the roots were related to the salt accumulation in the shoot. Salinity‐induced changes on root lipids were more important in Frantoio than in Leccino, indicating the specific role of the roots in salt exclusion mechanisms. Conversely the effect of salinity on leaf lipid composition was more important in the leaves of the salt‐sensitive Leccino.  相似文献   

7.
The effect of sodium chloride (NaCl), sodium sulfate (Na2SO4), and potassium chloride (KCl) on growth and ion concentrations of faba bean (Vicia faba L. cv. Troy) was studied. After 14 or 15 d of isoosmotic treatment with 100 mM NaCl or 75 mM Na2SO4, respectively, plants developed toxicity symptoms. These symptoms were characterized by local and nonchlorotic wilting spots, which later turned to black, necrotic spots. In contrast to NaCl or Na2SO4 treatment, plants treated with 100 mM KCl did not show these symptoms. The symptoms occurred on those leaves that accumulated highest concentrations of Na+ and showed highest Na+ : K+ ratios. Our results indicate that Na+ toxicity inducing K+ deficiency is responsible for the spot necrosis of faba bean. Additionally, chlorotic symptoms occurred. The concentrations of Na+ and Cl were determined in chlorotic leaves and in isolated chloroplasts. The reduction of chlorophyll in leaves after NaCl exposure may be explained in terms of high Cl concentrations in the chloroplasts and appears to depend on high Na+ concentrations. Chlorotic toxicity symptoms can be avoided by additional Mg2+ application.  相似文献   

8.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   

9.
The effect of alkali stress on crop production has gained importance around the world. Avocado (Persea americana Mill.) is considered a salt-sensitive species, but the effect of alkaline water on avocados has not been sufficiently studied. Plant growth, leaf damage, and chemical analysis were evaluated in response to alkali salt (NaHCO3) and neutral salt (NaCl) stresses on six clonally propagated avocado rootstocks. All plants exhibited exclusion mechanisms by the accumulation of Na+ and Cl? in their root systems, Na+ was concentrated to a greater extent than Cl?. The accumulation of Na+ in the leaves was greater when applied as NaHCO3 compared to the NaCl treatment. Although Cl? toxicity is more commonly observed under usual field conditions, in our experiments when Na+ reached the leaves it caused nearly two times more leaf necrosis.  相似文献   

10.
Fern leaf lavender (Lavandula multifida L.) is a perennial shrub native to Almería with known medicinal properties, which grows in saline soils that are increasingly present in the Mediterranean region. However, the effects of salinity on the mineral nutrition and physiology of L. multifida are unknown. In the present study, we evaluated the salt resistance of this species and compared it with other members of the Lamiaceae . Plants of L. multifida were grown in pots in a mixture of sphagnum peat‐moss and Perlite, and treated with five different NaCl concentrations [10 (control), 30, 60, 100, and 200 mM NaCl] over a period of 60 d. The effects of different levels of salinity on mineral nutrient and osmolyte concentrations and on biomass were evaluated. Our results show that L. multifida plants were able to grow with 60 mM NaCl without significant biomass reduction. Na+ and Cl were the main contributors to the osmotic potential in both roots and leaves, whereas total soluble sugars (TSS) and proline made only a small contribution. The concentrations of TSS and proline showed different trends in the different organs: in roots, both showed the highest concentrations at 60 mM NaCl, whereas in leaves TSS increased and proline decreased with increasing salt stress. To survive salinity, L. multifida plants increased salt excretion (Na+ and Cl) by leaves at 100 and 200 mM NaCl and leaf succulence at 60, 100, and 200 mM NaCl. Excessive accumulation of Na+ and Cl was avoided by shedding leaves. Our results indicate that L. multifida is better adapted to salinity compared to other members of the Lamiaceae ¸ a consideration that is particularly relevant for their growth in arid saline areas.  相似文献   

11.
There exists a great variability among plant species regarding their sensitivity and resistance to high salinity in soil, and most often this variability is related with the ability of a particular plant species to regulate ion homeostasis and transport. In this study, we have investigated the effects of NaCl on growth rate, water status, and ion distribution in different cells and tissues of two succulent plants, Aloe vera and Salicornia europaea. Our results showed that the growth of A. vera seedlings was significantly decreased in response to salinity. However, the growth of S. europaea seedlings was greatly stimulated by high concentrations of NaCl. Under saline conditions, S. europaea seedlings maintained K+ and Ca2+ uptake in roots and showed a higher root‐to‐shoot flux of Na+ and Cl as compared to A. vera. Despite great accumulation of Na+ and Cl in photosynthetically active shoot cells in S. europaea, its growth was enhanced, indicating S. europaea is capable of compartmentalizing salt ions in the vacuoles of shoot cells. Aloe vera seedlings, however, showed a low transport rate of Na+ and Cl to leaves and suppressed uptake of K+ and Ca2+ in roots during NaCl treatment. Our results also implicate that A. vera may be able to accumulate Na+ and Cl in the metabolically inactive aqueous cells in leaves and, as a result, the plant can survive and can maintain growth under saline conditions.  相似文献   

12.
ABSTRACT

The present work was aimed at determining the limits of tolerance to sodium chloride (NaCl) of a halophyte, Beta macrocarpa Guss (wild Swiss chard). Five week-old plants were cultivated with a nutritive solution to which was added 0, 100, 200, and 300 mM NaCl. Plants were harvested after four weeks of treatment. The growth (fresh and dry weight, leaf surface area, and leaf number), water contents, and the mineral composition (meq · g?1 DW) of roots and leaves (reduced nitrogen (N), K+, Ca2 +, Na+, Cl?) were determined on individual plants. Results show that Beta macrocarpa can tolerate up to 200 mM NaCl. A significant decrease in biomass production (to 50% of control) was observed only for 300 mM NaCl. In the latter treatment, leaf mean surface area was 25% of control. The shoot-to-root ratio was not changed. Leaf hydration was not modified by salt treatment. This ability of the plant to maintain the hydric equilibrium of its leaves seemed associated with an efficient intracellular compartmentalization of Na+ and Cl? ions. Salt treatment had little effect on N content (80% of control), but decreased significantly K+ and Ca2 + contents. These three essential elements could be limiting for growth of leaves and roots of plants challenged by NaCl.  相似文献   

13.
Agricultural productivity is worldwide subjected to increasing salinity problems. Various strategies are applied to overcome the deleterious effects of salinity on plants. This study was conducted in order to determine whether drought pretreatment of seedlings or seed pretreatment with NaCl increases the long‐term salinity resistance of tomato (Solanum lycopersicum L.) and whether the adaptive response to salinity is accompanied by physiological changes throughout the plant‐growth cycle. When plants were pretreated at the five‐leaf growth stage, the plant dry weight was significantly higher in drought‐pretreated than in non‐pretreated plants after 50 d of salt treatment. The positive effect of drought pretreatment applied at the five‐leaf stage was maintained throughout the entire growth cycle, as fruit yield of drought‐pretreated plants was 40% higher than that of non‐pretreated plants at the end of the harvest period (150 d of 70 mM NaCl treatment). Moreover, the most productive plants maintained lower Na+ and Cl accumulation in their leaves until the end of the growth cycle, which shows that adaptation is a long‐term response during which the plants adjust their physiology to the environmental conditions. Salt resistance was also improved through seed pretreatment with NaCl. In conclusion, drought pretreatment applied at the five‐leaf stage or seed pretreatment with NaCl provide an alternative way to enhance salt resistance in tomato, and the increase in yield is associated with physiological changes throughout the plant‐growth cycle.  相似文献   

14.
Soybean plants, varieties “Lee”, “Jackson” and “Bragg” were grown in solution culture at various salinity levels. A NaCl concentration of 10 mM was already inhibitory to growth of “Jackson”; growth of “Lee”, however, was only reduced at a salt concentration of 50 mM or higher. The moderately salt tolerant variety “Lee” efficiently excluded Cl? from the leaves up to about 50 mM NaCl in the medium, but showed high Cl? contents in the root; exclusion of Na+ from the leaves was also apparent in this variety. On the other hand, the salt sensitive variety “Jackson” did not have the capacity for exclusion of Cl? and Na+. The physiological behaviour of the variety “Bragg” resembled that of “Jackson”. It is suggested that the exclusion of Cl? and Na+ from the leaves in the soybean variety “Lee” is regulated by the root.  相似文献   

15.
The perennial Medicago sativa cv. Gabès is widely grown on saline soils in Tunisian oases. The mechanisms by which this NaCl‐tolerant cultivar maintains a positive growth balance were analyzed. In this plant of considerable agronomic interest, biochemical analyses were conducted in order to study the effects of salinity on mature leaves. Free‐radical detoxification mechanisms and changes induced by the accumulation of reactive oxygen species (ROS) in response to the NaCl stress were compared between the upper (young) and lower (old) carbohydrate source leaves. Long‐term NaCl (150 mM) treatment significantly reduced the size of source leaves supporting growth. Salinity damage was greater in the lower than in the upper leaves. This damage was associated with a high Na+ : K+ ratio and a decrease in the activity of H2O2‐scavenging enzymes, leading to lipid peroxidation. In lower source leaves that were mainly affected by ionic stress, superoxide dismutase (SOD) was overexpressed and guaiacol peroxidase (GPX) activity increased. In contrast, in upper source leaves that were mainly exposed to water deficit, catalase and ascorbate peroxidase (APX) activities increased whereas GPX activity was unchanged. The upper source leaves maintained adequate ionic and water status and an efficient ROS detoxification, allowing sinks to be supplied with photoassimilates and maintaining a positive growth balance in this cultivar of alfalfa.  相似文献   

16.
The effects of different levels of arsenic (As) and salinity on bean plant (Phaseolus vulgaris L., cv. Buenos Aires) nutrition were investigated. We studied the processes of absorption and accumulation of chloride (Cl) and micronutrient elements: boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn). The experiment was performed in soilless culture at two levels of As: 2 and 5 mg As L‐1 [added as sodium arsenite (NaAsO2)], and three saline levels [only sodium chloride (NaCl) was added]: 1, 2, and 4 dSm‐1. Sodium arsenite and NaCl significantly affected micronutrients allocation within the bean plant at levels used in this study. Arsenite depressed Mn and Cl concentrations in the root, whereas root B, Cu, and Zn levels were increased. Boron, Cu, Fe, and Cl concentrations were significantly higher in As‐stressed plants compared with controls. The addition of NaCl increased the Cl and Mn concentrations in roots and Cl, Fe, and Mn in leaves.  相似文献   

17.
Abstract

To assess whether grafting raised the salt tolerance of cucumber seedlings by limiting transport of Na+ to the leaf and to test whether the salt tolerance of grafted plants was affected by the shoot genotype, two cucumber cultivars (“Jinchun No. 2”, a relatively salt-sensitive cultivar, and “Zaoduojia”, a relative salt-tolerant cultivar) were grafted onto rootstock pumpkin (Cucurbita moschata Duch. cv. “Chaojiquanwang”, a salt-tolerant cultivar). Ungrafted plants were used as controls. The effects of grafting on plant growth and ion concentrations were investigated under NaCl stress. Reductions in the shoot and root dry weights, leaf area and stem diameter of grafted plants were lower and concentrations of K+ and Cl? in the leaves were higher than those of ungrafted plants under the same NaCl stress. The Na+ concentration and Na+/K+ ratio in scion leaves and in the stems of grafted plants were lower, whereas those in rootstock stems and roots were higher than in ungrafted plants under the same NaCl stress. Shoot and root dry weight, leaf area and stem diameter were negatively correlated with leaf Na+ concentrations and Na+/K+ ratio, but were positively correlated with leaf K+ concentrations. The Na+ concentrations and Na+/K+ ratio were lower, whereas the K+ concentrations in the leaves of grafted “Zaoduojia” plants were higher than those in grafted “Jinchun No. 2” plants under the same NaCl stress. The reductions in leaf area and stem diameter of grafted “Jinchun No. 2” plants were more severe than those of grafted “Zaoduojia” plants. These results indicate that: (1) the higher salt tolerance of grafted cucumber seedlings is associated with lower Na+ concentrations and Na+/K+ ratio and higher K+ concentrations in the leaves, (2) grafting improved the salt tolerance of cucumber seedlings by limiting the transport of Na+ to the leaves, (3) the salt tolerance of grafted cucumber seedlings is related to the shoot genotype.  相似文献   

18.
Thirty eight accessions of brown mustard (Brassica juncea (L.) Czern. and Coss.) were screened after two weeks growth in solution culture containing 120 mol m‐3 NaCl. Considerable variation for salt tolerance was observed in this set of germplasm, since some accessions showed relatively vigorous growth in saline medium.

In order to determine the consistency of degree of salt tolerance at different growth stages of crop life cycle two salt tolerant accessions, P‐15 and KS‐51 and two salt sensitive 85362 and 85605 were tested at the adult stage in 0(control), 100 and 200 mol m‐3 NaCl. Both the tolerant accessions produced significantly greater fresh and dry biomass and had considerably higher seed yield than those of the salt sensitive accessions. Analysis of different ions in the leaves showed that salt tolerant accessions contained greater amounts of Na+, K+ and Ca2+ than the salt sensitive accessions, although they did not differ significantly for leaf Cl. Only one salt tolerant accession P‐15 had greater leaf K/Na ratio and K+ versus Na+ selectivity compared with the tolerant KS‐51 and the two salt sensitive accessions.

From this study it was established that there is a considerable variation for salt tolerance in B.juncea which can be exploited by selection and breeding for improvement of its salt tolerance. Since the degree of salt tolerance in B.juncea does not change at different growth stages of the crop life cycle, selection for salt tolerance at the initial growth stages could provide individuals that would be tolerant at all other growth stages. Accumulation of Na+, K+ and Ca2+ in the leaves are important components of salt tolerance in B.juncea.  相似文献   

19.
Calcium (Ca2+) amelioration of the plant's growth response to salinity depends on genetic factors. In this work, supplemental Ca2+ did not improve growth in Phaseolus vulgaris L. cv. Contender under high‐saline conditions and negatively affected several physiological parameters in nonsalinized plants. The response to supplemental Ca2+ was examined using plants grown in 25% modified Hoagland solution at different Na+ : Ca2+ ratios. In control plants (1 mM Ca2+; 1 mM Na+) surplus Ca2+ (4 or 10 mM) was associated with stomatal closure, decrease of hydraulic conductivity, sap flow, leaf specific dry weight, leaf K+ and leaf Mg2+ concentrations, and inhibition of CO2 assimilation. Leaf water content was enhanced, while water‐use efficiency and dry matter were unaffected during the 15 d experimental period. The Ca2+ effect was not cation‐specific since similar results were found in plants supplied with high external Mg2+ or with a combination of Ca2+ and Mg2+. Relative to control plants, salinization (50 and 100 mM NaCl) caused a decrease in dry matter, hydraulic conductivity, sap flow, leaf Mg2+ activity, and inhibition of stomatal opening and CO2 assimilation. However, NaCl (50 and 100 mM NaCl) enhanced leaf K+ concentration and water‐use efficiency. At 100 mM NaCl, leaf water content also significantly increased. Supplemental Ca2+ had no amelioration effect on the salt‐stress response of this bean cultivar. In contrast, the 50 mM–NaCl treatment improved stomatal conductance and CO2‐assimilation rate in plants exposed to the highest Ca2+ concentration (10 mM). Phaseolus vulgaris is classified as a very NaCl‐sensitive species. The similarities in the effects caused by supplemental Ca2+, supplemental Mg2+, and NaCl salinity suggest that P. vulgaris cv. Contender has a high non‐ion‐specific salt sensitivity. On the other hand, the improvement in gas‐exchange parameters in Ca2+‐supplemented plants by high NaCl could be the result of specific Na+‐triggered responses, such as an increase in the concentration of K+ in the leaves.  相似文献   

20.
Abstract

Effects of increasing salt concentrations 0, 180, 360 mol im3 sodium chloride (NaCl), on growth, succulence, mineral composition, and glycinebetaine content in Haloxylon recurvum was investigated. Fresh and dry weight of plants increased with an increase in salinity. Succulence of shoots increased at low salinity and decreased at high salinity. Root and shoot Ca+, Mg+, and K+content decreased with increasing salinity while both Na+ and Cl content increased, reaching 4,900 and 5,300 mmol kg‐1 dry weight, respectively. Glycinebetaine (mol m‐3 tissue water) significantly increased in shoots at 360 mol m‐3 NaCl, but did not differ significantly in roots treated with from 0 to 360 mol m‐3 NaCl. Haloxylon recurvum is a highly salt tolerant stem succulent plant which accumulate a high quantity of salt, which makes it a good candidate to use for phytoremediation in highly saline areas of the sub‐tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号