首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat processing during canning is responsible for the change in flavor of black tea infusion. The quantitative change in the volatile components of the black tea infusion during heat processing is not sufficient for explaining the sensory evaluation. In this study, application of aroma extract dilution analysis using the volatile fraction before and after black tea (Darjeeling) samples were heat processed resulted in the detection of 10 odor-active peaks for which flavor dilution (FD) factors changed. Seven potent odorants were identified from these peaks by gas chromatography-mass spectrometry. Among these components, 3-methylbutanal (stimulus), methional (potato-like), beta-damascenone (sweet), dimethyl trisulfide (putrid), and 2-methoxy-4-vinylphenol (clove-like) showed the highest FD factors after heat processing of the black tea sample. Therefore, these odorants were the most important components involved in changing the black tea odor during heat processing. In addition, the precursor of beta-damascenone in black tea infusion was investigated, and 3-hydroxy-7,8-didehydro-beta-ionol was determined to be one of the beta-damascenone-generating compounds for the first time.  相似文献   

2.
Volatile aroma principles, nonvolatile taste constituents (caffeine and chlorogenic and caffeic acids), and glycosidically bound aroma compounds of monsooned and nonmonsooned raw arabica coffee were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Among the most potent odor active constituents known to contribute to the aroma of the green beans, 3-isopropyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine, 4-vinylguaiacol, beta-damascenone, (E)-2-nonenal, trans,trans-2,4-decadienal, phenylacetaldehyde, and 3-methylbutyric acid were detected by GC-MS in both samples. A decrease in content of methoxypyrazines and an increase in 4-vinylguaiacol and isoeugenol resulted in a dominant spicy note of monsooned coffee. These phenolic compounds exist partly as their glycosides, and their release from the bound precursors during monsooning accounted for their higher content in monsooned coffee. A considerable decrease in astringent chlorogenic acid as a consequence of hydrolysis to bitter caffeic acid was noted in monsooned coffee. Radiation processing of nonmonsooned beans at a dose of 5 kGy resulted in an increased rate of monsooning. At this dose a quantitative increase in most of the aroma active components could be observed in all samples studied. Hydrolysis of chlorogenic acid to caffeic acid was noted in radiation-processed monsooned coffee beans irrespective of whether the treatment was carried out before or after monsooning. These changes were, however, not observed in irradiated, nonmonsooned coffee beans, suggesting an enzymatic rather than a radiolytic cleavage of chlorogenic acid. A rationale behind the mechanism of monsooning and radiation-induced enhancement of the monsooning process is discussed.  相似文献   

3.
Application of aroma extract dilution analysis using the volatile fraction of a Japanese green tea (Sen-cha) sample resulted in the detection of 36 odor-active peaks with flavor dilution (FD) factors between 10 and 5000. Thirty-six potent odorants were identified from 36 odor-active peaks by gas chromatography/mass spectrometry (GC/MS) and/or the multidimensional GC/MS (MDGC/MS) system. Among these components, 4-methoxy-2-methyl-2-butanethiol (meaty), (Z)-1, 5-octadien-3-one (metallic), 4-mercapto-4-methyl-2-pentanone (meaty), (E,E)-2,4-decadienal (fatty), beta-damascone (honey-like), beta-damascenone (honey-like), (Z)-methyl jasmonate (floral), and indole (animal-like) showed the highest FD factors. Therefore, these odorants were the most important components of the Japanese green tea odor. In addition, 4-methoxy-2-methyl-2-butanethiol, 4-mercapto-4-methyl-2-pentanone, methional, 2-ethyl-3, 5-dimethylpyrazine, (Z)-4-decenal, beta-damascone, maltol, 5-octanolide, 2-methoxy-4-vinylphenol, and 2-aminoacetophenone were newly identified compounds in the green tea.  相似文献   

4.
The concentrations of 19 odorants, recently characterized by GC-olfactometry and aroma extract dilution analysis as the most odor-active compounds in raw hazelnuts, were quantitated by stable isotope dilution assays (SIDA). Calculation of odor activity values (OAV) on the basis of odor thresholds in oil revealed high OAVs, in particular for linalool, 5-methyl-4-heptanone, 2-methoxy-3,5-dimethylpyrazine, and 4-methylphenol. A model mixture in sunflower oil containing the 13 odorants showing OAVs above 1 in their natural concentrations resulted in a good similarity compared to the overall nut-like, fruity aroma of the raw hazelnuts. Quantitation of the 25 most odor-active compounds in roasted hazelnut paste by SIDA showed clear changes in the concentrations of most odorants, and formation of new odor-active compounds induced by the roasting process was observed. The highest OAVs were calculated for 3-methylbutanal (malty), 2,3-pentanedione (buttery), 2-acetyl-1-pyrroline (popcorn), and (Z)-2-nonenal (fatty), followed by dimethyl trisulfide, 2-furfurylthiol, 2,3-butanedione, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone. The aroma of a model mixture containing the 19 odorants with OAVs above 1 in their actual concentrations in the roasted nut material was judged to elicit a very good similarity to the popcorn-like, coffee-like, and sweet-smoky aroma of the roasted hazelnut paste. New SIDAs were developed for the quantitation of 5-methyl-4-heptanone, 5-methyl-(E)-2-hepten-4-one, 2-thenylthiol, and 3,5,5-trimethyl-2(5H)-furanone.  相似文献   

5.
Coffee flavor is the product of a complex chain of chemical transformations. The green bean has only a faint odor that is not at all reminiscent of coffee aroma. It contains, however, all of the necessary precursors to generate the unmistakable coffee flavor during roasting. The levels and biochemical status of these precursors may vary in relation to genetic traits, environmental factors, maturation level, postharvest treatment, and storage. To improve our understanding of coffee flavor generation, the sensory and biochemical impact of maturation was assessed. Maturation clearly favored the development of high-quality flavor in the coffee brew. A specific subclass of green coffee beans, however, generated high-quality coffee flavor irrespective of maturation. Biochemical aspects were examined using a dynamic system: immature and mature green coffee suspensions were incubated under air or argon. On the analytical side, a specific pool of flavor precursors was monitored: chlorogenic acids, green coffee proteins, and free amino acids. A link between maturation, the redox behavior of green coffee suspensions, and their sensory scores was identified. Compared to ripe beans, unripe beans were found to be more sensitive to oxidation of chlorogenic acids. Aerobic incubation also triggered the fragmentation or digestion of the 11S seed storage protein and the release of free amino acids.  相似文献   

6.
Aroma extract dilution analysis of raw Arabica coffee revealed 3-isobutyl-2-methoxypyrazine (I), 2-methoxy-3,5-dimethylpyrazine (II), ethyl 2-methylbutyrate (III), ethyl 3-methylbutyrate (IV), and 3-isopropyl-2-methoxypyrazine (V) as potent odorants. The highest odor activity value was found for I followed by II, IV, and V. It was concluded that I was responsible for the characteristic, peasy odor note of raw coffee. Twelve odorants occurring in raw coffee and (E)-beta-damascenone were also quantified after roasting. The concentration of I did not change, whereas methional, 3-hydroxy-4, 5-dimethyl-2(5H)-furanone, vanillin, (E)-beta-damascenone, and 4-vinyl- and 4-ethylguaiacol increased strongly during the roasting process.  相似文献   

7.
By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated by solvent extraction and solvent-assisted flavor evaporation (SAFE) from unifloral rape honey harvested in July 2009, 28 odor-active areas could be detected within a flavor dilution factor (FD) range of 4-2048. The highest FD factors were found for (E)-β-damascenone (cooked apple-like), phenylacetic acid (honey-like), 4-methoxybenzaldehyde (aniseed-like), 3-phenylpropanoic acid (flowery, waxy), and 2-methoxy-4-vinylphenol (clove-like). Twenty-three odorants were then quantitated by application of stable isotope dilution assays, and their odor activity values (OAV, ratio of concentration to odor threshold) were calculated on the basis of newly determined odor thresholds in an aqueous fructose-glucose solution. The highest OAVs were calculated for (E)-β-damascenone, 3-phenylpropanoic acid, phenylacetic acid, dimethyl trisulfide, and phenylacetaldehyde. Quantitative measurements on a rape honey produced in 2011 confirmed the results. A model mixture containing the 12 odorants showing an OAV ≥ 1 at the same concentrations as they occurred in the rape honey was able to mimick the aroma impression of the original honey. The characterization of the key odorants in rape flowers from the same field suggested 3-phenylpropanoic acid, phenylacetic acid, and three further odorants to be transferred via the bees into the honey.  相似文献   

8.
Initial moisture of green coffee may vary as a function of green coffee processing and storage conditions. The impact of initial moisture and steam treatment on roasting behavior and aroma formation was investigated. Steam treated coffees as well as coffees with initial moisture content of 5.10, 10.04, and 14.70 g water per 100 g wb were roasted. Light and dark roasting trials were carried out using a fluidizing-bed roaster with a batch size of 100 g of green beans. Differences in roast coffee attributes, that is, color, density, and organic roast loss, and odorant concentrations were more marked in light roasted than in dark roasted coffees. The results of roasting steam treated coffee suggest that this step affects roasting behavior primarily by extracting some aroma precursor compounds.  相似文献   

9.
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.  相似文献   

10.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

11.
Twenty-five odor-active compounds were quantified in the fresh, hand-squeezed juice of White Marsh seedless grapefruits using stable isotope dilution assays. By calculation of the odor activity values of the odorants (ratio of their concentrations in the juice to their odor thresholds in water) it was shown that the fruity esters ethyl 2-methylpropanoate, ethyl butanoate, and (S)-ethyl 2-methylbutanoate, and the fruity, sweet winelactone, as well as the grassy smelling (Z)-hex-3-enal, and trans-4,5-epoxy-(E)-dec-2-enal with metallic odor, were among the most potent odorants of the fresh grapefruit juice. The typical sulfurous, grapefruit-like odor quality was mainly due to the catty, blackcurrant-like 4-mercapto-4-methylpentan-2-one and the grapefruit-like smelling 1-p-menthene-8-thiol. These findings were confirmed by reconstitution experiments to simulate the aroma of the fresh grapefruit juice.  相似文献   

12.
In a roasted Arabica coffee brew, the potent roasty odor quality compound was identified as 3-mercapto-3-methylbutyl acetate by comparison of its Kovats gas chromatography retention index, mass spectrum, and odor quality to those of the synthetic authentic compound. 3-Mercapto-3-methylbutyl acetate has been identified for the first time in the coffee, and according to the results of the aroma extract dilution analysis, the contribution of this compound to the flavor of the roasted coffee brew varied depending on the degree of the coffee bean roasting. The concentration of this compound in the coffee brews as with 3-mercapto-3-methylbutyl formate increased with an increase in the degree of roasting. However, the slope of the amount of both esters was different, and 3-mercapto-3-methylbutyl acetate hardly increased with a low degree of roasting at more than a 21 luminosity (L)-value, but it rapidly increased when the roasting degree of the coffee beans reached the L-value of 18. These results suggested that the contribution of 3-mercapto-3-methylbutyl acetate to the overall flavor is peculiar to the flavor of the highly roasted coffee.  相似文献   

13.
Three cultivars of snake fruits, Pondoh Hitam, Pondoh Super, and Gading, were freshly extracted using liquid-liquid extraction. The aroma compounds of the three samples were analyzed by GC-MS and GC-olfactometry using the nasal impact frequency (NIF) method. A total of 24 odor-active compounds were associated with the aroma of snake fruit. Methyl 3-methylpentanoate was regarded as the character impact odorant of typical snake fruit aroma. 2-Methylbutanoic acid, 3-methylpentanoic acid, and an unknown odorant with very high intensity were found to be responsible for the snake fruit's sweaty odor. Other odorants including methyl 3-methyl-2-butenoate (overripe fruity, ethereal), methyl 3-methyl-2-pentenoate (ethereal, strong green, woody), and 2,5-dimethyl-4-hydroxy-3[2]-furanone (caramel, sweet, cotton candy-like) contribute to the overall aroma of snake fruit. Methyl dihydrojasmonate and isoeugenol, which also have odor impact, were identified for the first time as snake fruit volatiles. The main differences between the aroma of Pondoh and Gading cultivars could be attributed to the olfactory attributes (metallic, chemical, rubbery, strong green, and woody), which were perceived by most of the panelists in the Pondoh samples but were not detected in the Gading samples. This work is a prerequisite for effective selection of salak genotypes with optimal aroma profiles for high consumer acceptance.  相似文献   

14.
In this work, the chemical changes occurring in the volatile fraction of Arabica coffee brews during storage at 4 and 25 degrees C for 30 days have been characterized for the first time by means of HS-GC-MS. A total of 47 compounds were identified and quantified: 2 sulfur compounds, 7 aldehydes, 3 esters, 15 furans, 5 ketones, 1 alcohol, 2 thiophenes, 4 pyrroles, 1 pyridine, 5 pyrazines, 1 alkene, and 1 acid. No new volatile compounds were detected at the end of the storage time. The changes observed are, in general, slower and less pronounced at refrigeration temperature. Storage also affects the sensory characteristics of the stored coffee brews, which lose part of their aroma intensity and freshness, acquiring some nondesirable notes such as rancid aroma, mainly during storage at 25 degrees C. Furthermore, seven aroma indices have been proposed as indicators of coffee brew staling, which show a good correlation with some sensory attributes, not only for aroma but also overall sensory quality. Consequently, they could be considered useful to monitor both the "age" and the sensory quality of stored coffee brews.  相似文献   

15.
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.  相似文献   

16.
Twenty-five odor-active compounds were quantified in hand-squeezed juices of Valencia late and Navel oranges using stable isotope dilution assays. Odor activity values (OAVs, ratio of the concentration to odor thresholds) based on odor thresholds in water were calculated for the entire set of aroma compounds in both varieties. It was shown that due to their high OAVs, the fruity-smelling esters ethyl 2-methylpropanoate, ethyl butanoate, (S)-ethyl 2-methylbutanoate, and 3a,4,5,7a-tetrahydro-3,6-dimethyl-2(3H)-benzofuranone (wine lactone), the grassy smelling (Z)-hex-3-enal, and the citrus-like decanal were the most potent odorants in both juices. The weaker fruity note in the Navel oranges was clearly correlated with significantly lower OAVs of all fruity-smelling esters but a higher OAV of (Z)-3-hexenal compared to Valencia late. Model solutions simulating the odor of both orange varieties confirmed the findings of the quantitation studies.  相似文献   

17.
The flavor of the Miyabi variety of Japanese muskmelon was extracted according to the Porapak Q column method (PQM) and evaluated by using aroma extract dilution analysis (AEDA) method. The overall odor of the PQM extracts was perceived as having a natural muskmelon-like odor, suggesting that the PQM was able to extract volatile compounds in muskmelon fruit without degradation of original flavor. Forty-six odorant compounds [Kovats index (KI), 961 < or = KI < or = 2605] were found by GC-sniffing in PQM extracts, confirming the effectiveness of PQM in trapping a wide range of volatile compounds in muskmelon flavor. The 46 odorants could be divided into three groups on the basis of their odor attributes: fruity note (KI < 1300); green, grassy, or cucumber-like note (1300 < KI < 2020); and sweet note (KI > 2020). When the original extracts were diluted in AEDA analysis, seven odorants could still be detected by GC-sniffing at a flavor diluation (FD) factor of 128 or above: one had a fruity note (compound 3); four had a cucumber-like, green, or grassy note (compounds 12, 17, 21, and 23); and two had a sweet note (caramel-like or yakitori-like) (compounds 32 and 34).  相似文献   

18.
19.
Carrots (Daucus carota L.) of cv. Bolero and cv. Carlo were processed into shreds and stored for up to 4 months at -24 degrees C (frozen storage), or the roots were stored for up to 4 months at 1 degrees C (refrigerated storage) followed by processing into shreds. Volatiles from the carrot shreds were collected by dynamic headspace technique and analyzed by GC-FID, GC-MS, GC-MS/MS, and GC-O to determine the volatile composition and aroma active components of carrots stored under different temperature conditions. A total of 52 compounds were quantified, of which mono- and sesquiterpenes accounted for approximately 99% of the total volatile mass. Major volatile compounds were (-)-alpha-pinene, beta-myrcene, (-)-limonene, (+)-limonene, (+)-sabinene, gamma-terpinene, p-cymene, terpinolene, beta-caryophyllene, alpha-humulene, and (E)- and (Z)-gamma-bisabolene. A considerable increase in the concentration of mono- and sesquiterpenes was observed during refrigerated storage, whereas the concentration of terpenoids was around the same level during frozen storage. GC-O revealed that the major volatiles together with (+)-alpha-pinene, (-)-beta-pinene, (+)-beta-pinene, 6-methyl-5-hepten-2-one, (-)-beta-bisabolene, beta-ionone, and myristicin had an odor sensation, which included notes of "carrot top", "terpene-like", "green", "earthy", "fruity", "citrus-like", "spicy", "woody", and "sweet".  相似文献   

20.
Changes in green coffee protein profiles during roasting   总被引:4,自引:0,他引:4  
To reveal its flavor, coffee has to be roasted. In fact, the green coffee bean contains all ingredients necessary for the later development of coffee flavor. It is now widely accepted that free amino acids and peptides are required for the generation of coffee aroma. However, the mechanisms leading to defined mixtures of free amino acids and peptides remain unknown. Information pertaining to the identification of precursor proteins is also lacking. To answer some of these questions, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) was used to follow the fate of green coffee proteins. Two conditions were considered: roasting and incubation of green coffee suspensions at 37 degrees C. Coffee beans were observed to acquire the potential to spontaneously release H(2)O(2) upon polymerization of their proteins during roasting. Fragmentation of proteins was also observed. Conversely, H(2)O(2) was found to control polymerization and fragmentation of green coffee proteins in solution at 37 degrees C. Polymerization and fragmentation patterns under the two conditions were comparable. These observations suggest that the two conditions under study triggered, at least to some extent, similar biochemical mechanisms involving autoxidation. Throughout this study, a unique fragmentation cascade involving the 11S coffee storage protein was identified. Generated fragments shared an atypical staining behavior linked to their sensitivity to redox conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号