首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests.  相似文献   

2.
To assess whether alpha‐1‐acid glycoprotein (AGP) can be detected on the membrane of feline circulating leucocytes. Design The presence of AGP on circulating leucocytes was investigated in both clinically healthy cats and cats with different diseases. A group of feline coronavirus (FCoV)‐positive cats, comprising cats with feline infectious peritonitis (FIP) and cats not affected by FIP but seropositive for FCoV, were included in this study because the serum concentration of AGP increases during FCoV infection. Procedure Flow cytometry (using an anti‐feline AGP antibody), serum protein electrophoresis, routine haematology and measurement of the serum AGP concentration were performed using blood samples from 32 healthy cats (19 FCoV‐seropositive), 13 cats with FIP and 12 with other diseases (6 FCoV‐seropositive). The proportion of cats with AGP‐positive leucocytes in the different groups (e.g. controls vs sick; FIP vs other diseases, etc.) or in cats with different intensities of inflammatory response was compared using a Chi‐square test. Results AGP‐positive leucocytes were found in 23% of cats. Compared with controls, the proportion of patients with positive granulocytes and monocytes was higher among sick cats (especially cats with diseases other than FIP) and cats with high serum AGP concentration, but not in cats with leucocytosis or that were FCoV‐seropositive. Conclusion AGP‐positive leucocytes can be found in feline blood, especially during inflammation. Conversely, no association between AGP‐positive leucocytes and FIP was found. Further studies are needed to elucidate the mechanism responsible for this finding and its diagnostic role in cats with inflammation.  相似文献   

3.
A commercially available in-practice test for feline coronavirus (FCoV) antibodies (FCoV Immunocomb, Biogal Galed Laboratories) was evaluated by comparison with the gold standard FCoV immunofluorescent antibody (IFA) test. One hundred and three serum or plasma samples were selected and tested: 70 were positive by both tests, 24 were negative by both tests. The in-practice test produced five false positive and four false negative results. The sensitivity of the in-practice test was 95% and the specificity was 83%. When the titres were compared it was found that the in-practice test results were significantly correlated with IFA titres but the degree of correlation was not likely to be clinically useful. The IFA titres of the four false negative samples were found to be low (less than 40) which suggests that even a cat with a false negative result is still unlikely to be excreting FCoV. A negative result with the in-practice assay is likely to be reliable for screening cats prior to entry into an FCoV-free cattery or stud. It would also be useful in the investigation of suspected FIP as most cats with this condition have high IFA titres of antibodies. A strong positive result would be useful in the diagnosis of FIP (in conjunction with other biochemical and cytological testing), but positive results would be of limited value in monitoring FCoV infection in healthy cats as the antibody titre could not be reliably compared with those obtained with IFA. All positive results obtained using the in-practice kit should be confirmed and titrated by IFA. The kit also appeared to work efficiently with ascites samples (n=6) but too few samples were analysed to draw firm conclusions.  相似文献   

4.
5.
The aims of this study were to validate a colorimetric method to measure total sialic acid (TSA) in feline serum and to investigate the serum concentration of TSA in clinically healthy cats seronegative (n = 9) and seropositive (n = 48) for feline coronavirus (FCoV), and in cats affected by feline infectious peritonitis (FIP, n = 28), tumors (n = 20), or inflammation (n = 16). The correlation between TSA and α1-acid glycoprotein (AGP) was also investigated. The method employed in this study is precise and accurate at TSA levels (in mg/L) commonly encountered in feline serum. No significant differences between seropositive (385.6 ± 192.2 mg/L) and seronegative (433.5 ± 179.0 mg/L) cats were detectable, suggesting that the simple infection by FCoVs does not influence TSA levels. Compared with seropositive controls, the concentration of TSA was higher in cats with FIP (556.7 ± 268.3 mg/L, P = 0.003), tumors (522.5 ± 294.4 mg/L, P = 0.028), and inflammation (546.8 ± 208.3 mg/L, P = 0.018). The discriminating power of TSA for FIP is moderate (area under the ROC curve = 0.65) and the likelihood ratio is higher than 3.0 only at high TSA levels. Consequently, TSA could support a diagnosis of FIP only at extremely high serum concentration (> 800 mg/L) or when the pre-test probability of FIP is high. No correlations were found between the TSA and AGP concentrations in cats with FIP, suggesting that sialylated proteins other than AGP are present. Both the antibody titre and the degree of AGP sialylation were negatively correlated with TSA levels, suggesting that increased TSA may contribute to reduce the burden of FCoVs.  相似文献   

6.
Immunologic phenomena in the effusive form of feline infectious peritonitis   总被引:15,自引:0,他引:15  
The effusive form of feline infectious peritonitis (FIP) was reproduced by injecting 12- to 16-week-old kittens intraperitoneally with a cell-free inoculum derived from the tissues of infected cats. The kittens used for the study were either positive for FIP virus-reacting antibodies before inoculation or they were seronegative. Seropositive kittens were obtained from a cattery where the natural infection was enzootic, and seronegative kittens were obtained from a specific-pathogen-free cattery. Only about half the kittens that were seronegative before inoculation developed disease or serum antibodies to the tissue-derived virus. Seronegative kittens that developed disease showed no signs of illness until 8 to 10 days after inoculation, and they lived for 7 to 14 days after clinical signs appeared. The onset of clinical disease coincided with the appearance of serum antibodies. In contrast, all of the seropositive kittens became ill within 36 to 48 hours after inoculation, and died within 5 to 7 days. If seronegative kittens were treated with immune serum or immunoglobulin (Ig)G, they developed disease with the same frequency, acuteness, and severity as seropositive kittens. Foci of hepatitis and serositis in seropositive kittens contained viral antigen, IgG bound to antigen, and complement. Serum complement activity also decreased several days before death in seropositive kittens inoculated with tissue-derived FIP virus. The temporal relationship of clinical disease and the appearance of serum antibodies, the more acute and severe nature of the disease produced in seropositive kittens, and the presence of antibody and complement in the lesions indicated that effusive FIP is immunologically mediated.  相似文献   

7.
Feline alpha(1)-acid glycoprotein (fAGP) increases during feline infectious peritonitis (FIP). We have recently identified a 29 kDa protein that we named feline AGP-related protein (fAGPrP) due to its cross-reactivity with an anti-human AGP monoclonal antibody. In this work we describe the tissue distribution of fAGPrP during FIP, and its relationship with feline coronavirus (FCoV) and myeloid cells. Tissues from five control cats and from 15 cats with FIP were examined by immunohistochemistry using monoclonal antibodies against human AGP, FCoV and myeloid antigens. Diffuse fAGPrP positivity within the lesions, likely due to vascular plasma leakage, endothelial and epithelial lining were detectable. Compared to controls, fAGPrP-expressing cells often increased in number and were diffusely distributed in lymph nodes, as usually occurs for IgM-producing plasma cells during early immune responses. These findings did not depend on the presence of FCoVs or of myeloid cells, suggesting that fAGPrP is not directly involved in the pathogenesis of FIP.  相似文献   

8.
A closed household of 26 cats in which feline coronavirus (FCoV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) were endemic was observed for 10 years. Each cat was seropositive for FCoV on at least one occasion and the infection was maintained by reinfection. After 10 years, three of six surviving cats were still seropositive. Only one cat, which was also infected with FIV, developed feline infectious peritonitis (FIP). Rising anti-FCoV antibody titres did not indicate that the cat would develop FIP. The FeLV infection was self-limiting because all seven of the initially viraemic cats died within five years and the remainder were immune. However, FeLV had the greatest impact on mortality. Nine cats were initially FIV-positive and six more cats became infected during the course of the study, without evidence of having been bitten. The FIV infection did not adversely affect the cats' life expectancy.  相似文献   

9.
Serum samples from 214 Swedish cats with no signs of infectious disease were analysed for the presence of antibodies against Chlamydophila felis (Cp felis), while 209 of these were also analysed for feline coronavirus (FCoV) antibodies. The prevalence of antibodies against Cp felis was 11%, with no significant difference between purebred and mixed breed cats. The overall prevalence of antibodies against FCoV was 31%, significantly higher among pure breed cats (65%) than among mixed breed cats (17%). A high proportion of cats with antibodies against FCoV had relatively high antibody titres, and was therefore likely to be shedding FCoV in faeces. For Cp felis, the majority of seropositive animals had relatively low antibody titres, and the risk of these animals infecting others is not known.  相似文献   

10.
11.
12.
13.
The aim of this study was to quantify and compare interferon-γ (IFN-γ) concentrations in the serum of clinically normal cats infected with feline coronavirus (FCoV) with its concentration in the sera and effusions of cats with feline infectious peritonitis (FIP), a disease associated with infection with a mutated form of FCoV.Clinically normal FCoV-infected cats living in catteries with a high prevalence of FIP had the highest serum IFN-γ concentrations. The serum concentration of IFN-γ was not significantly different in cats with FIP compared with clinically normal FCoV-infected animals living in catteries with a low prevalence of the disease. Moreover, the concentration of IFN-γ was significantly higher in the effusions than in the serum of cats with FIP, probably due to IFN-γ production within lesions. These findings support the hypothesis that there is a strong, ‘systemic’ cell mediated immune response in clinically normal, FCoV-infected cats and that a similar process, albeit at a tissue level, is involved in the pathogenesis of FIP.  相似文献   

14.
Feline coronaviruses (FCoV) vary widely in virulence causing a spectrum of clinical manifestations reaching from subclinical course to fatal feline infectious peritonitis (FIP). Independent of virulence variations they are separated into two different types, type I, the original FCoV, and type II, which is closely related to canine coronavirus (CCV). The prevalence of FCoV types in Austrian cat populations without FIP has been surveyed recently indicating that type I infections predominate. The distribution of FCoV types in cats, which had succumbed to FIP, however, was fairly unknown. PCR assays have been developed amplifying parts of the spike protein gene. Type-specific primer pairs were designed, generating PCR products of different sizes. A total of 94 organ pools of cats with histopathologically verified FIP was tested. A clear differentiation was achieved in 74 cats, 86% of them were type I positive, 7% type II positive, and 7% were positive for both types. These findings demonstrate that in FIP cases FCoV type I predominates, too, nonetheless, in 14% of the cases FCoV type II was detected, suggesting its causative involvement in cases of FIP.  相似文献   

15.
16.
17.
A population of Persian cats experienced an epidemic of feline infectious peritonitis (FIP) over 2 years. Twelve cases of FIP occurred in litters born during this period. Cats contracting FIP were all genetically related through the sire. Feline coronavirus (FCoV) genomic RNA was detected consistently in this study in biologic samples from adult cats, kittens suffering from FIP, and their siblings. Analysis of viral 7a/7b open reading frame (ORFs) were analyzed and revealed two distinct virus variants circulating in the population, one with an intact 7a ORF and one with two major deletions in the 7a ORF. The 7b ORFs were intact and similar among all virus isolates, although point mutations resulting in amino acid changes were present. The sire was determined to be infected with both variants, and was persistently virus-infected. We speculate the deletion variant arose from the non-deletion variant during viral replication in this population, possibly in the sire.  相似文献   

18.
Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. In this study we demonstrate the ability of small interfering RNA (siRNA) mediated RNA interference (RNAi) to inhibit the replication of virulent FCoV strain FIPV WSU 79-1146 in an immortalised feline cell line. A panel of eight synthetic siRNAs targeting four different regions of the FCoV genome were tested for antiviral effects. Efficacy was determined by qRT-PCR of intracellular viral genomic and messenger RNA, TCID50 infectivity assay of extracellular virus, and direct IFA for viral protein expression. All siRNAs demonstrated an inhibitory effect on viral replication in vitro. The two most effective siRNAs, targeting the untranslated 5' leader sequence (L2) and the nucleocapsid gene (N1), resulted in a >95% reduction in extracellular viral titre. Further characterisation of these two siRNAs demonstrated their efficacy when used at low concentrations and in cells challenged with high viral loads. Taken together these findings provide important information for the potential therapeutic application of RNAi in treating FIP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号