首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea cucumber Apostichopus japonicus juveniles acclimated to different environmental conditions (23, 25, and 27°C combined with 25, 30, and 35 psu) were assessed for tolerance to increasing and decreasing levels of salinity at a rate of 2 psu h−1. They were also tested for the LS50 (median lethal salinity) when transferred directly into a series of higher salinity (32–46 psu) and lower salinity (9–25 psu). The CSMax (critical salinity maximum), CSMin (critical salinity minimum), USTL (upper salinity tolerance limit), and LSTL (lower salinity tolerance limit) were positively correlated to the acclimated salinity level but negatively correlated to temperature. The CSMax of A. japonicus was 6.2–10.0 psu higher than the USTL, and the CSMin was 5.5–8.5 psu lower than the LSTL, indicating that gradual changes in salinity resulted in the wide range of salinity tolerance that was observed, but that abrupt changes in salinity resulted in the narrow range of tolerance. Two-way analysis of variance revealed that salinity and temperature had a significant effect on 50% CSMax, 50% CSMin, USTL, and LSTL (P < 0.001). The information obtained in this study will be valuable for the further development of the sea cucumber aquaculture industry in China.  相似文献   

2.
The physiological responses of the juvenile Crassostrea nippona in terms of filtration, oxygen consumption and ammonia excretion to changes in temperature (16–32°C), salinity (15–35 psu) and body size (small, medium and large) were investigated. In this study, the values of filtration rate (FR), oxygen consumption rate (OCR) and ammonia excretion rate (AER) increased with temperature rising from 16°C to 24°C, reaching the highest values at 24°C and 28°C; with any further increase in temperature above this limit, these values decrease drastically (p < .05). The highest Q10 coefficients were 2.75 for large, 3.54 for medium at 16–20 and 3.47 for small size at 20–24°C respectively. Moreover, the responses of FR and OCR were found to be influenced significantly by salinity, tending to increase concomitantly with salinity up to 25–30 psu, though the values of these parameters were diminished dramatically (p < .05) above this level, showing a reverse pattern from that observed in AER, which firstly decreased to the lowest level at 25 and 30 psu, and then severely (p < .05) increased to the highest level at 35 psu. In addition, the low O:N ratios of all sizes of C. nippona at 16°C and 30–35 psu were indicative of a protein‐dominated catabolism, whereas the O:N ratios of large size at 20–32°C and all sizes at 20–30 psu, indicating that the metabolic energy from protein diminished and lipid and carbohydrate were used as the energy substrates. Physiological rates of C. nippona were well correlated with its size. The average values of mass exponents (b‐values) estimated in the present study were 0.657 for OCR and 0.776 for AER at different temperatures, and 0.647 for OCR and 0.767 for AER at varying salinities, signifying that physiological process of C. nippona becomes relatively slower with increasing body size regardless of temperature or salinity. Finally, our results confirm that the optimal temperature and salinity for juvenile C. nippona lie within 24–28°C and 25–30 psu respectively. The results of physiological traits in response to environmental factors of this species are informative in site selection for the cultivation.  相似文献   

3.
This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and α-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 ± 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33°C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na+ level in the C group on the 4th day at 6 ppt. Na+ and Ca2+ concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca2+ level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and E groups was lower than the other treatments on the 1st day at 12 ppt and the 2nd day at 33°C. Regardless of Artemia enrichment, plasma ions (Na+, K+, Ca2+, and Mg2+) and glucose concentrations in fish exposed to salinity stress tests were higher than fish in fresh water. Glucose concentration in plasma also increased after 2 days at 33°C. Although most of our results were not significantly different, the use of vitamins C, E, and HUFA in Artemia enrichment can improve Juveniles tolerance under stress conditions, and regardless of enrichment, these data show that beluga juveniles are partly sensitive to high salinity and temperature.  相似文献   

4.
Juvenile cobia (Rachycentron canadum) (total length 15.16 ± 0.92 cm and weight 19.26 ± 4.5 g) were exposed to different concentrations of ammonia–N (unionized plus ionized ammonia as nitrogen), using the static renewal method at different salinity levels of 5, 20, and 35‰ at pH 8.1 and 25°C. The 24, 48, 72, 96 h LC50 values of ammonia–N for R. canadum juveniles were 60.28, 48.57, 37.42, 22.73 mg l−1 at 35‰; 51.25, 43.63, 28.17, 19.05 mg l−1 at 20‰; and 39.48, 25.31, 19.50, 8.13 mg l−1 at 5‰, respectively. The 24, 48, 72, 96 h LC50 values of NH3–N (unionized ammonia as nitrogen) were 1.81, 1.46, 1.12, and 0.68 mg l−1 at 35‰; 1.75, 1.49, 0.96, and 0.65 mg l−1 at 20‰; and 1.52, 0.97, 0.71, and 0.31 mg l−1 at 5‰, respectively. As the salinity decreased from 35 to 5‰, susceptibility of ammonia–N increased by 34.5, 47.88, 50.56, and 64.23% after 24, 48, 72, and 96 h exposure, respectively. Furthermore, we found that exposure of fish to ammonia–N caused an increase in oxygen consumption of 129.1, 157.5, and 192% and a decrease in the ammonia excretion level of 53.4, 38.2, and 23.3% with respect to the control.  相似文献   

5.
Standard oxygen consumption rate (MO2) was determined for 19 cownose rays (Rhinoptera bonasus) using flow-through respirometry. Rays ranged in size from 0.4 to 8.25 kg (350–790 mm DW). Respirometry experiments were conducted on seasonally acclimatized rays at temperatures from 19.0 to 28.8 °C. Estimates of mass-dependent MO2 ranged from 55.88 mg O2 kg−1 h−1 for an 8.25 kg ray to 332.75 mg O2 kg−1 h−1 for a 2.2 kg animal at 22–25°C. Multiple regression analysis examining the effect of temperature, salinity, and mass on standard mass-independent MO2 found temperature (P < 0.01), and mass (P < 0.0001) to have a significant effect on oxygen consumption, whereas salinity did not (P > 0.05). Q 10 was calculated as 2.33 (19–28 °C), falling between the estimates determined for two other batoid species, the bull ray (Myliobatos aquila; Q 10 = 1.87) and the bat ray (Myliobatis californica; Q 10 = 3.00). The difference in the Q 10 estimates may be attributed to the use of seasonally acclimatized as opposed to laboratory-acclimated animals.  相似文献   

6.
Three pepsinogens (PG1, PG2, and PG3) were highly purified from the stomach of freshwater fish rice field eel (Monopterus albus Zuiew) by ammonium sulfate fractionation and chromatographies on DEAE-Sephacel, Sephacryl S-200 HR. The molecular masses of the three purified PGs were all estimated as 36 kDa using SDS–PAGE. Two-dimensional gel electrophoresis (2D-PAGE) showed that pI values of the three PGs were 5.1, 4.8, and 4.6, respectively. All the PGs converted into corresponding pepsins quickly at pH 2.0, and their activities could be specifically inhibited by aspartic proteinase inhibitor pepstatin A. Optimum pH and temperature of the enzymes for hydrolyzing hemoglobin were 3.0–3.5 and 40–45°C. The K m values of them were 1.2 × 10−4 M, 8.7 × 10−5 M, and 6.9 × 10−5 M, respectively. The turnover numbers (k cat) of them were 23.2, 24.0, and 42.6 s−1. Purified pepsins were effective in the degradation of fish muscular proteins, suggesting their digestive functions physiologically.  相似文献   

7.
In experimental culture conditions in tanks, the effect of weight (W: 11–452 g) and temperature (T: 14–29°C) on the growth rate (SGR, % bw day−1) and maximum daily food intake (SFR, % bw day−1) in sharpsnout sea bream (Diplodus puntazzo) was studied. The possible combined effect of both independent variables (W and T) was also analyzed by multiple regression analysis, fitting the data to the equation Ln Y = Ln a + b Ln W + cT + dT 2 + eT Ln W. Both SGR and SFR, and therefore feed efficiency (FE = SGR/SFR), were significantly influenced by the interaction between temperature and weight and may be expressed by means of the following equations: Ln SGR = −6.1705 + 0.5809T − 0.0087T 2 − 0.0249T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.949; ANOVA P < 0.0001); Ln SFR = −4.8257 + 0.4425T − 0.0063T 2 − 0.0163T Ln W ( R\textadj2 R_{\text{adj}}^{2}  = 0.964; ANOVA P < 0.0001).The results suggest that the optimum temperature for SGR and FE (T SGRopt and T FEopt), and the temperature at which the maximum SFR (T SFRmax) is reached, decreases with body weight, in accordance with the equations: T SGRopt = 33.297 − 1.435 Ln W; T FEopt = 29.332 − 1.890 Ln W; and T SFRmax = 34.941 − 1.304 Ln W, respectively. In this way, T SGRopt is 28.4, 26.7, and 24.7°C; T SFRmax is 30.5, 28.9, and 27.1°C and T FEopt is 22.9, 20.6, and 18°C for 30, 100 and 400 g body weight, respectively.  相似文献   

8.
To provide target strength (TS) information for estimating the body length of yellowfin tuna Thunnus albacares and its abundance around fish aggregating devices, TS was measured ex situ and in situ. In the ex situ TS measurements, two cameras synchronized with a 200 kHz echosounder were used to obtain the precise orientation of the yellowfin tuna under free swimming conditions. The ex situ TS (dB re 1 m2)–fork length (FL, cm) regression was: TS = 27.06 log (FL) − 85.04. Ex situ TS was found to reach its maximum in the tilt angle range of −15° to −20° after excluding TS samples with insignificant correlation to the tilt angle. The angle between the vertebra and the swim bladder was approximately 25° according to X-ray images, supporting the above tilt range. The relationship between the swim bladder volume (V SB, ml) and the fork length was: V SB = 0.000213 FL3. The results from the in situ TS measurements indicated that the tilt angle was highly concentrated between −10° and 15°. The results from a calculation using the ex situ TS–FL equation with the fork length from biological sampling agreed strongly with the average in situ TS.  相似文献   

9.
This study describes the digestible protein (DP) and digestible energy (DE) utilization in juvenile mulloway, and determined the requirements for maintenance. This was achieved by feeding triplicate groups of fish weighing 40 or 129 g held at two temperatures (20 or 26°C), on a commercial diet (21.4 g DP mJ DE−1) at four different ration levels ranging from 0.25% of its initial body weight to apparent satiation over 8 weeks. Weight gain and protein and energy retention increased linearly with increasing feed intake. However, energy retention efficiency (ERE) and protein retention efficiency (PRE) responses were curvilinear with optimal values, depending on fish size, approaching or occurring at satiated feeding levels. Maximum predicted PRE was affected by body size, but not temperature; PRE values were 0.50 and 0.50 for small mulloway, and 0.41 and 0.43 for large mulloway, at 20 and 26°C respectively. ERE demonstrated a similar response, with values of 0.42 and 0.43 for small, and 0.32 and 0.34 for large mulloway at 20 and 26°C respectively. Utilization efficiencies for growth based on linear regression for DP (0.58) and DE (0.60) were independent of fish size and temperature. The partial utilization efficiencies of DE for protein (k p) and lipid (k l) deposition estimated using a factorial multiple regression approach were 0.49 and 0.75 respectively. Maintenance requirements estimated using linear regression were independent of temperature for DP (0.47 g DP kg−0.7 day−1) while maintenance requirements for DE increased with increasing temperature (44.2–49.6 kJ DE kg−0.8 day−1). Relative feed intake was greatest for small mulloway fed to satiation at 26°C and this corresponded to a greater increase in growth. Large mulloway fed to satiation ate significantly more at 26°C, but did not perform better than the corresponding satiated group held at 20°C. Mulloway should be fed to satiation to maximize growth potential if diets contain 21.4 g DP mJ DE−1.  相似文献   

10.
Regulation of arterial partial pressure of O2 (PaO2) in Atlantic salmon (Salmo salar) was investigated during resting conditions in normoxic and hyperoxic water. Dorsal aorta cannulated adult Atlantic salmon (1.2–1.6 kg, n = 8) were exposed to 2 week sequential periods of normoxia [16.7 ± 1.1 kPa (mean ± SD)] and hyperoxia (34.1 ± 4.9 kPa) in individual tanks containing seawater (33.7 ± 0.2 ppt) at stable temperature conditions (8.7 ± 0.7°C) and a light regime of L:D = 12:12. Tank design and sampling procedures were optimized to provide suitable shelter and current for the fish, and to allow repeated, undisturbed sampling of blood from free-swimming fish. Fish were sampled regularly through the experimental period. PwO2, PaO2, blood ion composition (Na+, K+, Cl), acid–base status (pH, PCO2, HCO3 ), haematocrit and glucose were measured. The most frequently observed PaO2 values were in the range of 60–80% of PwO2, both during normoxia and hyperoxia, and PaO2 values were significantly lower during normoxia than during hyperoxia. Blood pH, PCO2 and HCO3 were significantly elevated during hyperoxia, while, Na+, Cl and Hct were significantly lower. K+ and glucose showed no significant differences. This study demonstrates a lack PaO2 regulation in Atlantic salmon to low partial pressures, in contrast to previous reports for many aquatic gill breathing animals. Both during normoxia and hyperoxia, PaO2 reflects PwO2, and alterations in external PO2 consequently result in proportional arterial PO2 changes. Physiological adaptation to hyperoxia, as illustrated by changes in several blood parameters, does not include down-regulation of PaO2 in Atlantic salmon. The lack of PaO2 regulation may make Atlantic salmon vulnerable to the oxidative stress caused by increased free radical formation in hyperoxic conditions.  相似文献   

11.
Tilapia juveniles are a very important life stage, and reliably assessing their growth performance is of prime importance in aquaculture production. The suitability of the RNA/DNA as a bioindicator for growth evaluation in tilapia has not yet been reported. In this study, we examined suitability of RNA/DNA ratio for assessing growth of tilapia juveniles and variation in the ratio under the concurrent influences of temperature and salinity using the central composite design and response surface methodology. Results showed that under our experimental conditions, the synergistic effects of temperature and salinity on the RNA/DNA ratio were highly significant (< 0.01), and the ratio varied with the two factors in a nonlinear fashion; the temperature × salinity interaction was detected at 1% significance level, and had a negative effect on the RNA/DNA ratio particularly at higher temperatures. Temperature was found to have a greater influence on RNA/DNA ratios than salinity. A model of the relation between RNA/DNA, temperature and salinity was developed, with an R2 greater than 98%. The linear relationships of absolute growth, cumulative growth and specific growth of tilapia juveniles to RNA/DNA ratio all showed an R2 of greater than 95%. Our results indicate that the RNA/DNA ratio was a responsive and accurate bioindicator for evaluating the growth performance of juvenile tilapia. These ratio‐based models are neither temperature‐ nor salinity‐dependent, and could be readily applicable to freshwater or brackish water aquaculture within temperature–salinity combinations ranging from 16 to 36°C and 0–16 ppt.  相似文献   

12.
The combined effects of temperature and salinity on the yolk utilization of sac fry in Nile tilapia (Oreochromis niloticus) were investigated using central composite experimental design and response surface approach. Based on the preliminary trials, temperature was determined to range from 22 to 34°C, and salinity ranging from 2 ppt to 10 ppt. The utilization was mensurated in terms of yolk sac volume. Results showed that the linear effects of temperature and salinity on the yolk utilization was significant (P < 0.01); the quadratic effects of and the interaction between the two factors were significant (P < 0.05); temperature was more important than salinity in influencing the yolk utilization. The model equation of yolk sac volume towards temperature and salinity was established. From those high R2 values, the model had excellent goodness of fit to experimental data and could be applied for predictive purpose. What with the production cost, it is suggested that the temperature/salinity combination, i.e. 28–30°C/4–6 ppt, be employed during the period of sac fry rearing, in which the yolk utilization was on average 98.6%.  相似文献   

13.
The main serine proteinase inhibitors of rainbow trout (Oncorhynchuss mykiss) and common carp (Cyprinus carpio) blood plasma were isolated and purified. The investigated inhibitors, α1-proteinase inhibitor (α1-PI) and antithrombin III (AT III), act by forming stable complexes with target proteinases. The association rate constants k on for the interaction of fish plasma inhibitors with several serine proteinases have been determined: k on for both carp and rainbow trout α1-PI were >107 M−1 s−1 for human neutrophil elastase, and in the case of bovine trypsin and chymotrypsin k on values were 2.0–5.2 × 106 M−1 s−1. Association rate constants k on for the interaction of carp and rainbow trout AT III with bovine trypsin and thrombin were about 1.3 × 104–7.9 × 105 M−1 s−1 without and >107 M−1 s−1 in presence of heparin; so antithrombins require the presence of heparin to become effective proteinase inhibitors. The high degree of homology of the estimated amino acid sequences of fish inhibitors reactive site loops confirms their similarity with other proteinase inhibitors from the serpin family.  相似文献   

14.
The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40 ± 0.30 g, n = 40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak − MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h−1 kg−1 (25°C) (P < 0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P < 0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P < 0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg−1). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.  相似文献   

15.
Trypsin from the viscera of Bogue (Boops boops) was purified to homogeneity by precipitation with ammonium sulphate, Sephadex G-100 gel filtration and Mono Q-Sepharose anion exchange chromatography, with an 8.5-fold increase in specific activity and 36% recovery. The molecular weight of the purified enzyme was estimated to be 23 kDa by SDS–PAGE and size exclusion chromatography. The purified trypsin appeared as a single band on native-PAGE and zymography staining. The purified enzyme showed esterase-specific activity on N-α-benzoyl-l-arginine ethyl ester (BAEE) and amidase activity on N-α-benzoyl-dl-arginine-p-nitroanilide (BAPNA). The optimum pH and temperature for the enzyme activity, after 10 min incubation, were pH 9.0 and 55°C, respectively, using BAPNA as a substrate. The trypsin kinetic constants K m and k cat on BAPNA were 0.13 mM and 1.56 s−1, respectively, while the catalytic efficiency k cat /K m was 12 s−1 mM−1. Biochemical characterisation of B. boops trypsin showed that this enzyme can be used as a possible biotechnological tool in the fish processing and food industries.  相似文献   

16.
Rested upon Box‐Behnken experimental design and response surface method, the joint effect of temperature, salinity and pH on the fertilization and hatching in Nile tilapia was studied under laboratory conditions. Results showed that the linear and quadratic effects of temperature, salinity and pH on fertilization and hatching were all statistically significant (< 0.01). Interactions between temperature and salinity, and between temperature and pH on fertilization and hatching statistically differed from zero (< 0.05). Interaction between salinity and pH on hatching was significant (< 0.05), but nonsignificant on fertilization (> 0.05). Regressions of fertilization and hatching towards temperature, salinity and pH were established, with the determination coefficient being 99.17% for fertilization and 99.79% for hatching, and could be used for prediction. By utilizing statistical optimization technique, the optimal temperature/salinity/pH combinations were attained: 27.6°C/9.3 ppt/7.5 for fertilization, at which the maximum fertilization was 87.7%, with the desirability being 92.11%; and 27.1°C/9.2 ppt/7.4 for hatching, at which the maximum hatching rate reached 81.2%, with the desirability as high as 96.74%. It could be said that the fertilization and hatching concurrently culminated at the 27.3°C/9.2 ppt/7.4 combination. It can be envisioned that the application of these results derived would give an impetus to the tilapia seed production efficiency and in turn to the development of tilapia husbandry.  相似文献   

17.
The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L?1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20–29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L?1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5–35 g L?1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L?1. The optimal salinity range for the juvenile is from 23 to 25 g L?1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture.  相似文献   

18.
The interest in diversifying aquacultural production with new species is evident, preferably with species with a high commercial value and whose consumption is not geographically limited. In this sense, octopus would be a good choice. The present work, therefore, presents an economic-financial analysis of the commercial viability of octopus ongrowing in the Mediterranean, paying special attention to the one- or two-cycle approach. Viability–profitability equations are developed for analysing economic parameters associated with production. To estimate the investment, an offshore ongrowing installation was designed comprising 150 cages containing 30,000 individuals. Growth was estimated for the two strategies: (A) Two consecutive cycles per year (2CY), each lasting 3.5 months from October to June. Initial weight was 0.7 kg, and the mean final weight was 2.7 kg. (B) One growth cycle per year (1CY) beginning in November or December and finishing in April or May, starting with the same weight individuals (0.7 kg) and giving individuals with a final weight of 3.65 kg. The highest costs, the most important from an economic point of view, are feed (38.57 and 40.03%, respectively), fixed assets (25.26 and 17.47%, respectively), juveniles (16.65 and 23.02%, respectively), and in fourth place salaries (14.34 and 15.60%, respectively). The equations obtained for the variables NPV (Net Present Value) and IRR (Internal Ratio of Return) are the following: 1 cycle per year (1CY), NPV = −489,088 − 1.45 K − 1,439,823 C F − 1,477,890 C J − 1,460,627 C O + 1,432,386 SP, IRR = 0.1328 − 7.82 × 10−8 K − 0.0416 C F − 0.0437 C J − 0.0427 C O + 0.0412 SP. 2 cycles per year (2CY), NPV = −404,431 − 1.46 K − 2,118,410 C F − 2,121,221 C J − 2,144,755 C O + 2,129,223 SP, and IRR = 0.0952 − 6.95 × 10−8 K − 0.0586 C F − 0.0588 C J − 0.0588 C O + 0.0613 SP. The NPV and IRR values estimated with the econometric equations for each option using the initial variables confirm that 1CY has a higher NPV (3,013,569 €) and IRR (12.27%) than 2CY, with an NPV of 2,396,708 € and IRR of 10.39%. In both cases, octopus ongrowing is economically viable, although 1CY is the most favourable system.  相似文献   

19.
Photosynthetic activity of Zostera japonica seedlings was measured using a gas volumeter at 0 and 6 days in culture under eight light (0–800 μmol photons/m2/s) and ten water temperature conditions (5–35°C). Seedlings from Ago Bay, Mie Prefecture were cultured in incubators accurately controlled at each test temperature for 1 week. After 1 week, maximum gross photosynthesis (P maxg) appeared at 29°C and most seedlings cultured at 30–35°C bleached and withered. At the same time, the light compensation point (I c) increased only at 30°C during the culture period. As a result, the upper critical water temperature for survival was 29°C in Z. japonica seedlings, which agrees well with that for the southern boundary of Z. japonica around Japanese coast. It is necessary to monitor this species around this boundary as a bio-indicator for seawater warming.  相似文献   

20.
Euryhaline fish, such as the Bullseye puffer Sphoeroides annulatus (Jenyns 1842), experience sudden salinity changes in their natural environment, which is more common than the exception, so they must adapt to survive and cope with extreme salt conditions. Therefore, Bullseye puffer juveniles were exposed to short‐term stress (39 hr) by fluctuating salinity conditions (41, 35, 29, 23, 17, 11, 5, 11, 17, 23, 29, 35, 41 psu) with a 3‐hr interval between each point at 26 ± 1ºC in a respirometer chamber and acclimation reservoirs. Responses to oxygen consumption rate (OCR: 23–35 mg O2 h–1 kg–1), ammonium excretion rate (AER: 1–1.85 mg NH4+ h?1 kg?1), oxygen‐nitrogen atomic ratio (O:N 17–30), osmoregulatory pattern (blood osmotic pressure from 342.4 to 332.8 mmol/kg) and changes in expression levels of Na+/K+‐ATPase in the gills (higher values at higher salinities) were measured. Although some signs of stress were detected below the iso‐osmotic point (11.4 psu), the puffer fish is a strong euryhaline fish that survives under these conditions. Nonetheless, it could recover when salinity returned to the initial acclimation point because Sphoeroides annulatus is able to live in a wide range of environments with wide natural salinity fluctuations; thus, a common practice in aquaculture has been to expose fish to low salinity for several reasons discussed in this study. This capacity reveals its high plasticity to saline adaptation from 41 to 5 psu an up from 5 to 41 psu, all in less than 2 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号