首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Canopy litterfall is a significant pathway for return of nutrients and carbon (C) to the soil in forest ecosystems. Litterfall was studied in five even-aged stands of Norway spruce, Sitka spruce, Douglas-fir, European beech and common oak at three different locations in Denmark; two sandy sites, Ulborg and Lindet in Jutland, and one loamy site, Frederiksborg on Zealand. Litterfall was collected during three years from 1994 to 1996 in all five species and during six years from 1994 to 1999 in Norway spruce, Sitka spruce and European beech. The average total litterfall was in the range of 3200–3700 kg ha−1 yr−1 and did not differ significantly among tree species. There were no significant differences in total litterfall among sites during the short period, but during the longer period the richer site Frederiksborg had significantly higher total and foliar litterfall amounts compared to the more nutrient-poor sites Lindet and Ulborg. There were close relationships between foliar and total litterfall suggesting that foliar litterfall can be reliably estimated from total litterfall. Beech and oak bud scale litter was significantly related to foliar litterfall. The amount of branch and twig litter was significantly higher in oak than in other tree species. The average foliar litterfall was well related to the annual volume increment. The relationship differed markedly from previously reported relationships based on global litterfall data suggesting that such relationships are better evaluated at the regional level. Nutrient concentrations and fluxes in foliar litterfall were not significantly different among the five tree species. However, there was a significant effect of site on most nutrient concentrations of the three litterfall fractions, and foliar fluxes of P, Ca and Mn were all significantly highest at Frederiksborg and lowest at Ulborg. The similarity in litterfall inputs to the forest floor under these five tree species suggested that previous reports of large variability in forest floor accumulation should primarily be attributed to differences in litter decomposition.  相似文献   

2.
Studies on the combined effects of beech–spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via throughfall and soil solution were measured in adjacent stands of pure spruce, mixed spruce–beech and pure beech on three nutrient rich sites (Flysch) and three nutrient poor sites (Molasse) over a 2-year period. At low deposition rates (highest throughfall fluxes: 17 kg N ha−1 year−1 and 5 kg S ha−1 year−1) there was hardly any linkage between nutrient inputs and outputs. Element outputs were rather driven by internal N (mineralization, nitrification) and S (net mineralization of organic S compounds, desorption of historically deposited S) sources. Nitrate and sulfate seepage losses of spruce–beech mixtures were higher than expected from the corresponding single-species stands due to an unfavorable combination of spruce-similar soil solution concentrations coupled with beech-similar water fluxes on Flysch, while most processes on Molasse showed linear responses. Our data show that nutrient leaching through the soil is not simply a “wash through” but is mediated by a complex set of reactions within the plant–soil system.  相似文献   

3.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

4.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

5.
Since the year 2000 mature beech and spruce trees were treated in a field experiment with double ambient ozone concentrations. Elevated ozone had no influence on average single leaf biomass and there were also no ozone effects on leaf nutrient concentrations in climatic normal years. However, the extraordinary dry summer 2003 triggered significant differences between the fumigated and control trees. For beech in the year after the drought event the control trees surprisingly had significantly lower foliar levels of K and P than in former years, whereas the ozone exposed trees showed no significant nutritional effects. There are indications, that the trees exposed to double ambient ozone were already adapted to higher ozone values, whereas the control trees experienced extraordinary high ambient ozone concentrations in the dry and sunny summer 2003. For spruce in autumn 2003 and 2004 ozone treated trees had significantly higher foliar levels of K in current year needles than control trees, an effect which cannot be thoroughly interpreted yet on the basis of the dataset available. This article belongs to the special issue „Growth and defence of Norway spruce and European beech in pure and mixed stands“.  相似文献   

6.
We assessed the effects of thinning (0, 20 and 30 % extraction of basal area) and canopy type (pine–beech vs. pine plots, beech accounting for 12 % of total basal area) on radial growth of dominant and codominant Scots pine at inter-annual scale and on microclimatic conditions, radial growth and xylogenesis 9 years after thinning at intra-annual scale. Thinning weakly affected pine growth, which was enhanced 3 years after harvesting. Over time, a gradual reduction in pine growth in mixed canopy relative to pure canopy occurred only in unthinned plots apparently due to beech expansion. Indeed, 9 years after thinning, a higher seasonal radial increment and a greater number of tracheids were produced under pine canopy in the unthinned plots, whereas no differences between canopy types were observed in the thinned plots. Radial increment and tracheid production were mainly affected by tree water status (air and soil humidity, throughfall). The differences of tree water status caused by treatments, and plausibly disparities in tree size and tree-to-tree competition, were the main drivers explaining the patterns observed for radial increment and xylogenesis. Our results suggest that the negative effects of beech competition on Scots pine growth in similar mixed forest may be controlled to some extent by thinning.  相似文献   

7.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

8.
It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was conducted in a mixed spruce-beech stand at Solling forest in central Germany to investigate the effect of canopy composition on soil respiration. The canopy cover was classified in four major canopy classes (pure beech, pure spruce, mixed and gap), and the area under each canopy class was identified as a sub-plot. Soil respiration in each sub-plot (n=4) was measured monthly from Jun 2005 to July 2006. Results show significant difference in annual soil respiration between the beech (359 g·m−2·a−1 C) and gap (211 g·m−2·a−1 C) sub-plots. The estimation of the total below-ground carbon allocation (TBCA) based on a model given by Raich and Nadelhoffer revealed considerably higher root CO2 production in the beech sub-plot (231 g·m−2·a−1 C) compare to the gap sub-plot (51 g·m−2·a−1 C). The contribution of the root respiration to the total soil respiration was higher in the soil under the beech canopy (59%) compared with the soil in the gap (29%). The findings suggested that the condition under the beech canopy may cause more desirable micro-site for autotrophic respiration and consequently higher CO2 release into the atmosphere.  相似文献   

9.

Assessing defoliation and measuring litterfall are two different ways of estimating the shedding of needles and leaves from the forest canopy. Both variables can be said to reflect the crown condition, but the two methods have rarely been compared. In this study the visual observations of defoliation of individual trees were compared with sampled litterfall data for the two main tree species in Denmark, Fagus sylvatica and Picea abies. Defoliation assessments and litterfall measurements were performed in seven level II plots. Six of the stands were 40 yrs old and the remaining stand was 81 yrs old. Both a positive and a negative correlation, which were not significant, were observed between defoliation and total leaf litterfall on the beech sites. Similarly, no significant correlation was observed between defoliation and the yearly needle litterfall on the younger Norway spruce plots. However, the defoliation and the yearly needle litterfall at the old stand at Klosterhede were positively correlated on a 10% significance level. A positive correlation was also apparent at the younger stands between the defoliation and the needle litterfall from the period April-July of the same year in which defoliation was assessed. The absence of a clear connection between the two assessments is discussed. The two assessments are apparently of widely different origin, which makes comparison difficult.  相似文献   

10.
The effects of dry deposition, canopy leaching, precipitation ion concentration, and precipitation H+ concentration on net throughfall flux (NTF, throughfall minus bulk precipitation) were evaluated on a seasonal basis by using a multiple regression analysis approach based on an observation period of 4 years in Shaoshan subtropical mixed evergreen forest, south-central China. Regression analysis results indicated that the estimated canopy exchange flux was the dominant factor regulating the NTF and the calculated dry deposition was a minor term. The seasonal dry deposition of base cations accounted for 15%–43% of the NTF. The NTF analysis showed that K+, Ca2+, Mg2+, Na+, and weak acids in throughfall were derived from foliar leaching and the canopy uptakes of H+, NH4 +, and NO3 were from precipitation. The retention rate of proton (H+ and NH4 +) in the canopy was close to the canopy leaching rate of base cations when corrected for weak acids because weak acid-induced canopy leaching did not exchange with protons, which suggested that the canopy leaching processes neutralized acid precipitation in Shaoshan forest.  相似文献   

11.
Litterfall was investigated in three even-aged Norway spruce (Picea abies), sitka spruce (Picea sitchensis) and beech (Fagus sylvatica) stands on a nutrient poor-soil in Southern Denmark. Dry weights and N, P, K, S, Mg, Ca, Na, Al, and Fe concentrations and fluxes were examined in litterfall fractions. Foliage litter amounted to 90% of total litterfall. The tree stands showed a similar mean annual litterfall. In the spruce stands, annual litterfall was correlated negatively with the current year increment and positively with the previous year increment. Annual litterfall in beech was constant during the 6 study years whereas Norway spruce and sitka spruce showed large fluctuations between years caused by drought, spruce aphid infestations and probably sea salt stress. Norway spruce responded with a long lasting elevated needle loss. Sitka spruce responded to infestations with premature needle loss during short periods. The presence of a large syrphid (Coccinellidae) population was important in regulating aphid (Elatobium abietinum) population density. The between-year variation in element concentrations of litterfall was small whereas variations during the year were large. Interspecific levels were recognized: Norway spruce>beech>sitka spruce. High concentrations in Norway spruce were ascribed to a combination of drought, sea salt stress and elevated transpiration. In sitka spruce, aphid infestations reduced the litterfall N content. Sitka spruce showed the smallest amount of base cation fluxes with litterfall. In contrast, spruce and beech exhibited even litterfall element fluxes. Litterfall studies revealed reduced vitality in the non-native spruce stands and underlined the perception of a healthy stand of native beech.  相似文献   

12.

Understanding how species-specific disturbances affect the dynamics of mixed forests is becoming increasingly important due to rapidly changing disturbance regimes. This study estimated the effect of Norway spruce (Picea abies (L.) Karst.) mortality on the disturbance processes in two mixed beech stands of the Western Carpathians that were affected by a bark beetle outbreak. We evaluated the size distribution, fraction of canopy and expanded gaps, the characteristics of gapmakers and the contribution of different species to gap size. The measured canopy gap fraction was <5%, and most canopy gaps were small (<100 m2). Spruce was the most abundant gapmaker, and its share among gapmakers was 3–6 times higher than its share in the canopy. We found that the increase in spruce mortality due to the outbreak resulted in a fine-scale mortality pattern. However, spruce gapmakers did not contribute much to gap area size, as shown by a weak correlation between the number of spruce gapmakers and the area of expanded gaps. Diameter distribution of living versus recently dead trees showed that beech mortality occurred disproportionately in large size classes. However, dead spruce trees were equally frequent in all diameter classes, which means beetles did not exclusively attack larger trees in these stands during the outbreak. We conclude that spruce mortality may have influenced successional processes by giving a competitive advantage to two other species that were not affected by the outbreak, provided that a high deer browsing intensity does not hinder the regeneration of new seedlings.

  相似文献   

13.
14.
Interception loss, gross precipitation, throughfall and stemflow solution chemistry beneath pine (Pinus pseudostrobus Lindl.), oak (Quercus sp.) and pine-oak natural forest canopies in northeastern Mexico were measured. Coefficients of variation for throughfall were 12% in pine and oak canopies and 17% in the mixed pine-oak canopy. The variability of stemflow averaged 66, 126 and 73% for pine, oak and the mixed pine-oak canopies, respectively. Linear regression analysis of net versus gross precipitation for the three canopies showed highly significant correlations (r = 0.974-0.984). Total precipitation during the experimental period was 974 mm and estimated interception loss was 19.2, 13.6 and 23% for the pine, oak and pine-oak canopies, respectively. Stemflow did not occur following rainfall events of less than 4 mm and, in all canopies, stemflow represented a minimal proportion of gross precipitation (0.60, 0.50 and 0.03% for pine, oak and pine-oak, respectively). Throughfall pH in pine (6.2), oak (6.3) and pine-oak (6.3) canopies was significantly more acidic than gross precipitation (6.6). Stemflow pH ranged from 3.7 (pine) to 6.0 (oak). The pine-oak canopy registered the highest throughfall and stemflow electrical conductivities, 104 and 188 microS cm(-1), respectively. Net nutrient leaching of K, Mg, Na, Fe, Mn and Zn was significantly higher from the pine-oak canopy than from the pure pine and oak canopies. Mean depositions of Ca and Cu in throughfall behaved similarly among the three types of canopies. A greater proportion of Zn in gross precipitation was absorbed by the oak canopy than by the pine and pine-oak canopies. Enrichment factors beneath the pine-oak canopy relative to gross precipitation varied from 1.2 to 3.2 for macro-nutrients (Ca, K, Mg and Na) and from 1.4 to 3.1 for micro-nutrients (Cu, Fe, Mn and Zn). Stemflow depositions of Ca, K, Mg and Cu were higher in the pine-oak canopy, whereas stemflow depositions of Na, Fe, Mn and Zn were higher in the pine canopy.  相似文献   

15.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

16.
The objective of this study was to examine the impact of summer throughfall on the growth of trees, at upland and floodplain locations, in the vicinity of Fairbanks, Alaska. Corrugated clear plastic covers were installed under the canopy of floodplain balsam poplar/white spruce stands and upland hardwood/white spruce stands to control soil moisture recharge as a result of summer precipitation. The covers were installed in 1989 and tree growth measurements were conducted through 2005. Soil moisture dynamics were measured using TDR techniques. Tree basal area growth at dbh in the control plots was approximately twice as high on the floodplain compared to the upland. Summer throughfall exclusion significantly decreased white spruce growth on the floodplain sites but not in the upland sites. In upland sites the melting snow pack is a major moisture resource for tree growth although it is not clear if moisture limitation occurs during the summer in the control plots. However in the floodplain stands white spruce growth was highly dependent on seasonal throughfall even though the ground water table was within the rooting zone and the soils were supplied with a spring recharge due to snowmelt. A number of factors were suggested as a foundation for this strong relationship. These include rooting distribution, soil texture, and the electrical conductivity of the ground water.  相似文献   

17.
Aboveground and belowground biomass of 15-year-old under-planted European beech seedlings (Fagus sylvatica L.) in Norway spruce stand were studied along a light gradient in three plots, in the northern part of Slovenia. Differences in soil water content, aboveground and fine root biomass distribution were confirmed between studied plots. Light had significant effect on the total biomass, root-shoot ratio (0.388 ± 0.076 under canopy, 0.549 ± 0.042 in the edge, 0.656 ± 0.047 in the open), specific root length (SRL) of fine beech roots (561.9 ± 42.2 under canopy, 664.3 ± 51.2 in the edge, 618.2 ± 72.8 in the open) and specific leaf area in beech, indicating morphological adjustment to shade. However, SRL of beech fine roots indicated no change between plots. The correlation between total aboveground and root biomass and light below the mature stand canopy was higher in the case of diffuse light intensity. Most fine roots of spruce were concentrated in the top (0–20 cm) soil layer. Beech fine roots under canopy and edge conditions were also concentrated in top (0–20 cm) soil layer and exhibited shift downwards to deeper soil horizons in open plot. Root proportion between beech and spruce changed with light toward beech with increasing light intensity for both fine and coarse roots.  相似文献   

18.
19.
Climate change towards a warmer and dryer vegetation period may negatively impact growing conditions for Scots pine monocultures situated on dry, sandy soils in Central Europe. The purpose of the study was to evaluate the effect of thinning on precipitation throughfall in young Scots pine stands on typical pine sites. In 1992, observation of precipitation and throughfall started at the Tyniště research site (lowland of Eastern Bohemia) in a 7-year-old pine stand planted in rows at a stocking of ca 10,000 trees ha−1. Throughfall was measured at weekly intervals during the growing season (April-September) by gauges randomly located in two treatments - variant 1C - Control without thinning and variant 2T - Thinned - and compared to precipitation at an open space outside of the canopy. The results demonstrated the positive effects of heavy low thinning (removal of 47% of the total number of trees and 31% of total pre-treatment basal area) on the water supply of young Scots pine stands. On the Thinned treatment, throughfall increased by 2-8% compared to Control plot. This positive effect persisted for six years after the first canopy reduction and the differences were significant for the first four years after thinning. After the second treatment (high thinning), throughfall on the Thinned treatment showed a nominal, but statistically insignificant increase. The likely reason for this result is that the application of a different type of thinning increased the variability of the canopy and, consequently, the effect of released crowns could not be detected.  相似文献   

20.
Forest floor characteristics influence nutrient cycling and energy flow properties of forest ecosystems, and determine quality of habitat for many forest plants and animals. Differential crown recession and crown development among stands of differing density suggest that an opportunity may exist to control the input of fine woody litter into the system by manipulating stand density. The objective was to measure the rate of branch mortality among stands of differing density and to estimate the range in total per hectare necromass inputs. Although litter traps are reliable for estimating per hectare rates of litterfall, branch mortality dating on sectioned stems uniquely allows assessment of several other litterfall components: (1) individual tree contributions to total litterfall; (2) the amount of branch material released by mortality, regardless of whether the branches are shed to the forest floor; (3) the distribution of basal diameters characterizing the litterfall from a given tree and stand. Twenty-four trees were felled and sectioned on permanent plots that were part of a silvicultural study of stand density regimes in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco.). Whorl branches were dissected out of bole sections to determine the dates of mortality, and a branch biomass equation was applied to estimate potential rate of litterfall. Periodic annual rates were expressed in four ways: (1) number of branches per tree; (2) mass of branches per tree; (3) mass of branches per unit of crown projection area; (4) mass of branches per hectare. For the growth periods investigated, larger trees and trees growing on denser plots tended to release a greater necromass through branch mortality. Average branch basal diameter generally decreased with increasing stand density. Annual branch mortality ranged from 33 to 430 g m−2 crown projection area for individual trees, and from 236 to 1035 kg ha−1 for individual plots. These rates approached the low end of the range of previously published fine litterfall rates for Douglas-fir. Rates on these plots were relatively low owing to the temporary delay in crown recession imposed by artificial thinning. A conceptual model of branch litter dynamics is presented to depict consistencies with crown development among stands managed under different density regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号