首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to develop one novel meloxicam (MEL) oil suspension for sustained-release and compare the pharmacokinetic characteristics of it with MEL conventional formulation in pigs after a single intramuscular administration. Six healthy pigs were used for the study by a crossover design in two periods with a withdrawal interval of 14 days. Plasma concentrations of MEL were measured by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetic parameters were calculated by noncompartmental methods. The difference was statistically significant (p < .05) between MEL oil suspension and MEL conventional formulation in pharmacokinetic parameters of mean residence time (6.16 ± 4.04) hr versus (2.66 ± 0.55) hr, peak plasma concentration (Cmax) (0.82 ± 0.12) µg/ml versus (1.12 ± 0.22) µg/ml, time needed to reach Cmax (Tmax) (2.33 ± 0.82) hr versus (0.59 ± 0.18) hr, and terminal elimination half-life (t1/2λz) (3.74 ± 2.66) hr versus (1.55 ± 0.37) hr. The mean area under the concentration–time curve (AUC0–∝) of MEL oil suspension and MEL conventional formulation was 5.35 and 3.43 hr µg/ml, respectively, with a relative bioavailability of 155.98%. Results of the present study demonstrated that the MEL oil suspension could prolong the effective time of drugs in blood, thereby reducing the frequency of administration on a course of treatment. Therefore, the novel MEL oil suspension seems to be of great value in veterinary clinical application.  相似文献   

2.
He, J., Tang, S., Li, L., Zhang, C., Li, X., Xia, X., Xiao, X. Pharmacokinetics of a novel amoxicillin/colistin suspension after intramuscular administration in pigs. J. vet. Pharmacol. Therap. 34 , 42–50. An amoxicillin (AMO) or colistin (COS) oil suspension was developed and corresponding pharmacokinetics studies were conducted in pigs after i.m. injection. The combination product is a white‐ to cream‐colored oil suspension which is easy to be re‐dispersed. Settling volume ratio, syringeability and flowability of the product is well consistent with the technical standards set by the Ministry of Agriculture of People’s Republic of China. Two studies were conducted to investigate the pharmacokinetics of the combination product in swine. First, the pharmacokinetics of the combination product was compared with those of the same products merely removing either AMO or COS. No significant change in the major pharmacokinetic parameters (Cmax, Tmax, MRT, t1/2λ, AUC and AUMC) was observed when either component was removed from the combination product, indicating that AMO and COS do not interfere with each other in their absorption and distribution in the tissue when used as a combination. Second, the pharmacokinetics of the combination product was compared with that of their respective single products. It was found that the apparent elimination half‐lives (t1/2λ) of AMO and COS in combination product were 6.38 and 8.09 h, which were 2.40 and 2.38 times longer than the single products, respectively. Thus, the novel AMO/COS suspension extended significantly the half‐life of both drugs to maintain a longer drug residence time in pigs when compared to their single products.  相似文献   

3.
本文对自制伊维菌素(IVM)和吡喹酮(PZQ)复方制剂在绵羊体内的药代动力学进行了研究,试验将18只绵羊随机分为3组,A组肌肉注射自制复方制剂;B组皮下注射市售单方IVM注射液;C组口服市售单方PZQ片剂,其中伊维菌素的给药剂量均为0.2 mg/kg体重,A组PZQ的剂量为30 mg/kg体重,C组PZQ剂量为100 mg/kg体重.试验结果显示,肌肉注射自制复方制剂中IVM的各项药代动力学参数与单方对照药物相比均无显著差异;尽管复方制剂PZQ的剂量约为单方对照品的1/3,但两者的AUC值相似,复方制剂中PZQ的达峰时间比单方对照品快约6倍,T1/2beta长约3倍,维持有效血药浓度时间长达24 h,结果说明,自制复方制剂中IVM的生物利用度与单方对照药物相似,吡喹酮的生物利用度与单方对照药物相比有显著提高,且具有起效快、疗效长的特点.  相似文献   

4.
We compared the pharmacokinetics of ivermectin premix and ivermectin microspheres in pigs after single and multiple administration regimes. In the single-dose experiments, 24 piglets were randomly divided into three groups and given ivermectin at 0.3 mg/kg using (a) 1.0% ivermectin administered subcutaneously, (b) 0.25% ivermectin premix orally, and (c) 0.25% ivermectin microspheres orally. In the multiple-dose experiment, 6 pigs in two equal groups received ivermectin premix and microspheres orally at 0.3 mg/kg for 7 consecutive days to monitor the valley plasma levels. The plasma samples were detected by fluorescence high-performance liquid chromatography, and concentration–time data were fitted to a noncompartmental model. After oral administration of ivermectin microspheres at a single dose, the elimination rate constant (Kel), the half-life (t1/2), the peak time (Tmax), the mean residence time (MRT), and the peak concentration (Cmax) were 0.012 ± 0.0031/hr, 59.94 ± 20.18 hr, 9.50 ± 0.93 hr, 55.96 ± 11.40 hr, and 37.75 ± 3.45 ng/ml, respectively. The Cmax of microspheres was not statistically different (p > .05) compared with that of premix groups (39.81 ± 5.83 ng/ml). Moreover, the AUC of the microcapsule groups was increased from 1,129.76 ± 245.62 to 1,607.33 ± 343.35 hr ng/ml compared with the premix groups, and the relative bioavailability increased by an average of 17.53% after oral administration with ivermectin microspheres. Multiple-dose administration also indicated pigs fed with ivermectin microspheres can get a higher minimum steady-state concentration and a longer maintenance time than ivermectin premix.  相似文献   

5.
6.
The aim of the study was to develop praziquantel (PZQ) oily suspensions with 30% PZQ high concentration for intramuscular injection and investigate their pharmacokinetics in cattle. Two optimized formulations containing 30% PZQ were developed in this study, and their quality met the technical standards set by the Ministry of Agriculture of the People's Republic of China. After intramuscular administrations of the suspensions (30 mg/kg), no significant differences were observed between the two oily suspensions. However, compared with the market available PZQ tablet after oral administration (150 mg/kg), our injections revealed longer plasma elimination half‐life (26.23, 22.16 h vs 6.35 h) and mean residence time (27.10, 25.88 h vs 9.16 h), indicating the antiparasitic efficacy of our suspensions may be prolonged, and further clinical efficacy investigation is needed. In addition, the relative bioavailability of our formulated suspensions was improved up to 441.32% and 425.60% compared with the oral reference product. Therefore, the injectable suspensions have the potential to become antiparasitic agents for the treatment of cattle schistosomiasis.  相似文献   

7.
8.
Plasma disposition, metabolism, protein binding and renal clearance of sulphamethoxazole (SMZ) and trimethoprim (TMP) were studied in four pigs after intravenous administration at a dose of 40 and 8 mg/kg, respectively. SMZ and TMP were quickly eliminated (mean elimination half-lives: 2.7 and 2.4 h, respectively). SMZ was predominantly acetylated; no hydroxy and glucuronide derivates could be detected in plasma and urine. TMP was 0-demethylated into 4-hydroxytrimethoprim (M1) and 3-hydroxytrimethoprim (M4) metabolite and subsequently extensively glucuronidated. SMZ, TMP and its M1 metabolite were excreted predominantly by glomerular filtration, while N4-acetylsulphamethoxazole and glucuronide conjugates of the M1 and M4 metabolites of TMP were actively eliminated by tubular secretion. The proportional drug percentage being present in the urine as parent compound was 13.1% for TMP and 16.0% for SMZ. The glucuronide conjugates of the M1 and M4 metabolites formed the main part (81.5%) of urinary TMP excretion pattern.  相似文献   

9.
OBJECTIVE: To evaluate the pharmacokinetics of a novel commercial formulation of ivermectin after administration to goats. ANIMALS: 6 healthy adult goats. PROCEDURE: Ivermectin (200 microg/kg) was initially administered IV to each goat, and plasma samples were obtained for 36 days. After a washout period of 3 weeks, each goat received a novel commercial formulation of ivermectin (200 microg/kg) by SC injection. Plasma samples were then obtained for 42 days. Drug concentrations were quantified by use of high-performance liquid chromatography with fluorescence detection. RESULTS: Pharmacokinetics of ivermectin after IV administration were best described by a 2-compartment open model; values for main compartmental variables included volume of distribution at a steady state (9.94 L/kg), clearance (1.54 L/kg/d), and area under the plasma concentration-time curve (AUC; 143 [ng x d]/mL). Values for the noncompartmental variables included mean residence time (7.37 days), AUC (153 [ng x d]/mL), and clearance (1.43 L/kg/d). After SC administration, noncompartmental pharmacokinetic analysis was conducted. Values of the variables calculated by use of this method included maximum plasma concentration (Cmax; 21.8 ng/mL), time to reach Cmax (3 days), and bioavailability (F; 91.8%). CONCLUSIONS AND CLINICAL RELEVANCE: The commercial formulation used in this study is a good option to consider when administering ivermectin to goats because of the high absorption, which is characterized by high values of F. In addition, the values of Cmax and time to reach Cmax are higher than those reported by other investigators who used other routes of administration.  相似文献   

10.
A study was undertaken in order to compare plasma disposition kinetic parameters of doramectin (DRM) and ivermectin (IVM) in horses after oral administration. Ten crossbreed adult horses, clinically healthy, weighing 380-470 kg body weight (bw) were selected for study. Faecal examinations were performed to determine faecal parasite egg counts. Horses were allocated to two groups of five animals to provide an even distribution considering the variables sex, body weight and faecal egg count. Group I, were treated with an oral paste formulation of IVM at 0.2 mg/kg b/w and Group II, were treated with an oral dose of 0.2 mg/kg bw of DRM prepared as paste from the injectable formulation for oral administration. Blood samples were collected by jugular puncture between 0 h and 75 days post-treatment. Plasma was separated and later solid phase extraction and derivatization samples were analysed by high performance liquid chromatography (HPLC); a computerised kinetic analysis was carried out. Data were compared using the Mann-Whitney U-test.The mean plasma concentrations of DRM and IVM after oral administration in horses were detected until 30 and 20 days, respectively. Both drugs showed similar patterns of absorption and no significant differences were found for peak concentration, the time to peak concentration, or for absorptive half-life. The terminal elimination half-life was significantly (P<0.05) longer in the DRM treated group than for the IVM treated group. The differences observed in the elimination half-life explain the longer mean residence time and high values of area under the concentration time curve for the group treated with DRM, which are 30% higher than those of the IVM group. Considering its pharmacokinetics, tolerance and anthelmintic efficacy, the oral administration of DRM, could be an alternative to IVM for the control of parasitic diseases of horses.  相似文献   

11.
Pharmacokinetic values of sodium amoxicillin (22 mg/kg of body weight) in foals were determined after a single IM injection in 6 Quarter Horse foals at 3, 10, and 30 days of age. Serum amoxicillin concentrations were measured serially over a 24-hour period. The absorption of amoxicillin was rapid and followed a 1st-order elimination. Mean peak serum concentrations occurred 30 minutes after the injection in foals at all ages and were 17.31 +/- 9.59 micrograms/ml when the foals were 3 days old, 23.28 +/- 9.86 micrograms/ml when the foals were 10 days old, and 21.35 +/- 6.39 micrograms/ml when the foals were 30 days old. Serum samples collected beyond 8 hours after administration contained amoxicillin concentrations less than 0.05 micrograms/ml. The elimination rate constant increased with increasing age (0.5265 +/- 0.0891 hour-1 when the foals were 3 days old, 0.6494 +/- 0.1114 hour-1 when the foals were 10 days old, and 0.7112 +/- 0.1016 hour-1 when the foals were 30 days old). Serum clearance increased with increasing age (498.4 +/- 82.6 ml/hr/kg at 3 days, 631.6 +/- 170.5 ml/hr/kg at 10 days, and 691.2 +/- 127.3 ml/hr/kg at 30 days). Serum half-life decreased with increasing age (1.34 +/-0.243 hour at 3 days, 1.10 +/- 0.239 hour at 10 days, and 0.991 +/- 0.139 hour at 30 days), whereas the extrapolated concentration at time zero and apparent volume of distribution did not change during the first 30 days of age.  相似文献   

12.
The objective of this study was to determine the pharmacokinetic behaviour of imidocarb in horses following a single i.m. injection at the dose commonly administered to treat Babesia caballi infections or to prevent babesiosis. Eight horses were injected i.m. with a single dose of 2.4 mg imidocarb dipropionate/kg bwt and blood, faecal, urine and milk samples were collected. For imidocarb determination, a high-performance liquid chromatographic method (HPLC) was used after weak cation-exchange solid phase, or liquid-liquid, extraction procedures. Twelve hours after treatment, no detectable plasma concentrations were recorded in any of the treated animals. The distribution and elimination patterns of the drug suggested that it is quickly sequestrated in some storage tissues and remains in the body for a long time. Its prolonged presence in the body may confer a reservoir effect to imidocarb in some tissues, therefore making it undetectable in the plasma of animals but sufficient to produce its described therapeutic and prophylactic activities.  相似文献   

13.
14.
The pharmacokinetics of indomethacin (1mg/kg) was determined in six adult sheep after intravenous (i.v.) and intramuscular (i.m.) injection. Plasma concentrations were maintained within the therapeutic range (0.3–3.0 μg/mL) from 5 to 50 min after i.v. and from 5 to 60–90 min after i.m. administration. After two trials, indomethacin best fitted an open two-compartment model. The mean (±SD) volumes of distribution at steady state ( V dss) were 4.10 ± 1.40 and 4.21 ± 1.93 L/kg and the mean clearance values ( C lB) were 0.17 ± 0.06 and 0.22 ± 0.12 L/h.kg for i.v. and i.m. routes, respectively. The elimination phase half-lives did not show any significant difference between routes of injection ( t ½β = 17.4 ± 4.6 and 21.25 ± 4.44 h, i.v. and i.m. respectively). After i.m. administration, plasma maximum concentration ( C max =  1.10 ± 0.68 μg/mL) was reached 10 min after dosing; the absorption phase was fast ( K ab = 26 ± 18 h-1) and short ( t ½ab = 2.33 ± 1.51 min) and the mean bioavailability was 91.0 ± 32.8%, although there was considerable interanimal variation. In some individuals, bioavailability was higher than 100%. This fact combined with the slower elimination phase after i.m. than after i.v. administration, could be related with enterohepatic recycling.  相似文献   

15.
The pharmacokinetics and bioavailability of butafosfan in piglets were investigated following intravenous and intramuscular administration at a single dose of 10 mg/kg body weight. Plasma concentration–time data and relevant parameters were best described by noncompartmental analysis after intravenous and intramuscular injection. The data were analyzed through WinNolin 6.3 software. After intravenous administration, the mean pharmacokinetic parameters were determined as T1/2λz of 3.30 h, Cl of 0.16 L kg/h, AUC of 64.49 ± 15.07 μg h/mL, Vss of 0.81 ± 0.44/kg, and MRT of 1.51 ± 0.27 h. Following intramuscular administration, the Cmax (28.11 μg/mL) was achieved at Tmax (0.31 h) with an absolute availability of 74.69%. Other major parameters including AUC and MRT were 48.29 ± 21.67 μg h/mL and 1.74 ± 0.29 h, respectively.  相似文献   

16.
In pregnant sheep at 120–130 days of gestational age, a study was undertaken in order to characterize the pharmacokinetics and transplacental exchange of Ivermectin after maternal or fetal intravenous administration. Eight pregnant Suffolk Down sheep of 73.2 ± 3.7 kg body weight (bw) were surgically prepared in order to insert polyvinyl catheters in the fetal femoral artery and vein and amniotic sac. Following 48 h of recovery, the ewes were randomly assigned to two experimental groups. In group 1, (maternal injection) five ewes were treated with an intravenous bolus of 0.2 mg ivermectin/kg bw. In group 2, (fetal injection) three ewes were injected with an intravenous bolus of 1 mg of ivermectin to the fetus through a fetal femoral vein catheter. Maternal and fetal blood and amniotic fluid samples were taken before and after ivermectin administration for a period of 144 h post‐treatment. Samples were analyzed by liquid chromatography (HPLC). A computerized non‐compartmental pharmacokinetic analysis was performed and the results were compared by means of the Student t‐test. The main pharmacokinetic changes observed in the maternal compartment were increases in the volume of distribution and in the half‐life of elimination (t½β). A limited maternal‐fetal transfer of ivermectin was evidenced by a low fetal Cmax (1.72 ± 0.6 ng/mL) and AUC (89.1 ± 11.4 ng·h/mL). While the fetal administration of ivermectin resulted in higher values of clearance (554.1 ± 177.9 mL/kg) and lower values of t½β (8.0 ± 1.4 h) and mean residence time (8.0 ± 2.9 h) indicating that fetal‐placental unit is highly efficient in eliminating the drug as well as limiting the transfer of ivermectin from the maternal to fetal compartment.  相似文献   

17.
The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co‐administered to dogs after oral treatment. Twelve healthy cross‐bred dogs (weighing 18–21 kg, aged 1–3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15‐day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high‐performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone‐administration were as follows: elimination half‐life (t1/2λz) 110 ± 11.06 hr, area under the plasma concentration–time curve (AUC0–∞) 7,805 ± 1,768 hr.ng/ml, maximum concentration (Cmax) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone‐administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0–∞ 4,301 ± 1,253 hr.ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.  相似文献   

18.
Summary

The disposition and urinary excretion of ciprofloxacin (CIP) following intravenous (IV) or intramuscular (IM) administration of 7.5 mg/kg body weight in sheep (n = 5) was studied. The intravenous plasma concentration curve was best described pharmacokinetically by a two‐compartment open model, while the intramuscular administration data fitted better to a one‐compartment open model. Mean elimination half‐lives after IV and IM administration were 72 and 184 minutes, respectively. The absorption of intramuscularly administered CIP in sheep was fast: maximal plasma concentration (Cmax) was reached quickly (tmax 31.93 min) and attained values of 0.69 ± 0.27 mg/l. The bioavailability was 49%. The urinary data showed a significant decrease in the elimination rate constant of CIP when CIP was administered intramuscularly. The other parameters calculated did not display differences between the two routes of administration. The results obtained suggest that when CIP was administered by the IM route in the assayed dose, it was able to maintain serum concentrations above the MIC of most common pathogens over an 8‐hour period.  相似文献   

19.
The aim of this study was to determine the pharmacokinetics of dexamethasone in broiler chickens. Dexamethasone sodium phosphate (0.3 mg/kg bodyweight) was injected IV or IM and blood samples were collected at 0, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12 and 24 h after administration. Dexamethasone in the plasma samples was measured using a liquid chromatography–tandem mass spectrometry method and the pharmacokinetics analysed according to a one-compartmental model.The maximum plasma concentration after IM administration occurred at 0.37 h. The elimination half-life for dexamethasone was 0.46 h and 0.70 h following IV and IM administration, respectively, which was shorter than other species, while the clearance (1.26 L/h kg) was higher than has been reported for other species (<0.5 L/h kg). The volume of distribution (~1 L/kg) was similar to values reported for other species and the bioavailability of dexamethasone after IM administration was 100%. The results from this study will be useful in investigating whether inflammatory disease may affect the pharmacokinetic parameters of dexamethasone in chickens.  相似文献   

20.
Azithromycin is the first of a class of antimicrobial agents designated azalides. The aim of the present study was to investigate the disposition pharmacokinetics of azithromycin in goats and determine its bioavailability. A cross-over study was carried out in two phases separated by 30 days. Azithromycin was administered at a single dose of 20 mg/kg body weight by i.v. and i.m. routes. Plasma concentrations of azithromycin were determined by a modified agar diffusion bioassay. After a single i.v. dose plasma concentrations were best fitted to a three-compartment open model. A two-compartment open model with first-order absorption fitted best after i.m. administration. The values of the pharmacokinetic parameters after i.v. administration were: half-life 32.5 h, apparent volume of distribution at the steady-state 34.5 L/kg, clearance 0.85 L/kg. and mean residence time (MRT) 40.1 h. After i.m. administration half-life of 45.2 h, a MRT of 60.3 h, maximum plasma concentration 0.64 mg/L and a bioavalability 92.2% were obtained. The pharmacokinetic parameters of azithromycin after i.m. administration, principally its long half-life and high bioavailability, could provide an alternative to the oral route of administration in goats, although more studies are needed to establish a suitable pharmaceutical formulation, propose optimun dosage regimens, investigate clinical efficacy and study the tolerability of repeated doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号