首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
[1]Ahn S.N., Kim Y.K., Han S.S., Choi H.C., Moon H.P. and McCouch S.R., Molecular mapping of a gene for resistance to Korean isolates of rice blast, RGN, 1996,13, 74-76 [2]Bonman J.M., Durable resistance to rice blast disease: environmental influences, Euphytica, 1992, 63, 115-123 [3]Causse M.A., Fulton T.M., Cho Y.G., Ahn S.N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P.C., Harrington S.E., Second G., McCouch S.R., and Tanksley S.D., Saturated molecular map of the rice genome based on an interspecific backcross population, Genetics, 1994, 138, 1251-1274 [4]Donna P., Kiyosawa S., Ando I., and Furutani T., Estimation of functional value of field resistance genes to blast disease in some rice varieties, Breeding Science, 1994, 44, 285-293 [5]Donna P., Ali M.S., Furutani T., and Kiyosawa S., Identification and isolation of blast resistance genes in three indica-type rice varieties, Breeding science, 1996, 46, 107-115 [6]Fukuoka S., and Okuno K., QTL analysis for field resistance to rice blast using RFLP markers, RGN, 1997, 14, 98-99 [7]Goto I., Jaw Y.L., and Baluch A.A., Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, pi-a, pi-k, pi-z and pi-I, Ann. Phytopath. Soc., Japan, 1981, 47(2), 252-254 [8]Hittalmani S., Foolad M.R., Mew T., Rodriguez R.L., and Huang N., Development of a PCR-based marker to identify rice blast resistance gene, Pi-2 (t), in segregating population, Theor. Appl. Genet., 1995, 91, 9-14 [9]Inukai T., Zeigler R.S., Sarkarung S., Bronson M., Dung L.V., Kinoshita T., and Nelson R.J., Development of pre-isogenic lines for rice blast resistance by marker aided selection from a recombinant inbred population, Theor. Appl. Genet., 1996, 93,560-567 [10]Inukai T., Nelson R.J., Zeigler R.S., Sarkarung S., Mackill D.J., Bonman J.M., Takamure I., and Kinoshita T., Allelism of blast resistance genes in near-isogenic lines of rice, Phytopathology, 1994, 84 (11), 1278-1283 [11]Imbe T., Oba S., Yanoria M.J.T., and Tsunematsu H., A new gene for blast resistance in rice cultivar IR24, RGN, 1997, 14, 60-62 [12]Kiyosawa S., Identification of blast resistance genes in some varieties, Japan J. of Breed, 1978, 28(4), 287-296 [13]Ling Z.Z., Wang J.L., Pan Q.H., and Li M.F., Classification for blast resistance of some Japonica type varieties from Yunnan province, Scientia Agricultura Sinica, 1990a, 23(5), 5-11 [14]Ling Z.Z., Pan Q.H., Huang S.Z., and Wang J.L., Rice breeding for resistance to blast, Fujian Publisher of sciences and technology, China Fujian, 1990b, 207-216 [15]Miyamoto M., Ando I., Rybka K., Kodama O., and Kawasaki S., High-resolution mapping of the indica-derived rice blast resistance genes l. Pi-b, MPMI (Molecular plant microbe interaction), 1996, 9(1), 6-13 [16]Mew T.V., Parco A.S., Hittalmani S., Inukai T., Nelson R., Zeigler R.S., and Huang N., Fine-mapping of major genes for blast resistance in rice, RGN, 1994, 11, 126-128 [17]Mago R., Nair S., and Mohan M., Resistance gene analogues from rice: cloning, sequencing and mapping, Theor. Appl. Genet., 1999, 99, 50-57 [18]Mackill D.J., and Bonman J.M., Inheritance of blast resistance in near-isogenic lines of rice, Phytopathology, 1992, 82, 746-749 [19]Naqvi N.L., and Chattoo B.B., Molecular genetic analysis and sequence characterized amplified region assisted selection of blast resistance in rice, In International Rice Genetics III, IRRI, Manila, 1996, 570-572 [20]Naqvi N.I., Bonman J.M., Mackill D.J., Nelson R.J., and Chattoo B.B., Identification of RAPD markers linked to a major gene for blast resistance in rice, Molecular breeding, 1995, 1, 341-348 [21]Pan., Wang., and Tanisaka., A new blast resistance genes identified in the Indian native rice cultivar Aus373 through allelism and linkage tests, Plant Pathology, 1999, 48 (2),288-293 [22]Pan Q.H., Wang L., Tanisaka T., and Ikehashi H., Allelism of rice blast resistance genes in two Chinese rice cultivars, and identification of two new resistance genes, Plant Pathology, 1998a, 47, 165-170 [23]Pan Q.H., Wang L., Ikehashi H., Yamagata H., and Tanisaka T., Identification oftwo new genes conferring resistance to rice blast in the Chinese native “Maowangu“, Plant Breeding, 1998b, 117, 27-31 [24]Pan Q.H., Wang L., Ikehashi H., and Tanisaka T., Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers, Phytopathology, 1996,86 (10), 1071-1075 [25]Rybka K., Miyamoto M., Ando I., Saito A., and Kawasaki S., High resolution mapping of the indica derived rice blast resistance genes II. Pi-ta and Pi-ta and a consideration of their origin, MPMI (Molecular plant microbe interaction), 1997, 10, 517-524 [26]Richter T.E., and Ronald P.C., The evolution of disease resistance genes, Plant Molecular biology, 2000, 42, 195-204 [27]Staskawicz B.J., Ausubel F.M., Kaker B.J., Ellis J.G., and Jones J.D.G., Molecular genetics of plant disease resistance, Science, 1995, 268, 661-667 [28]Tabien R.E., Pinson S.R.M., Marchetti M.A., Li Z., Park W.D., Paterson A.H., and Stansel J.W., Blast resistance genes from Teqing and Lemont, in: G.S Khush (Ed.), Rice Genetics Newsletter III, IRRI, Manila, 1996, 451-452 [29]Wang Z.X., Yano M., Yamanouch U., Iwamoto M., Monna L., Hayasaka H., Katayose Y., and Sasaki T., The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rice repeat class of plant disease resistance genes, The plant Journal, 1999, 19(1), 55-64 [30]Wang G.L., Mackill D.J., Bonman J.M., McCouch S.R., Champoux M.C., and Nelson R.J., RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistance rice cultivar, Genetics, 1994, 136,1421-1434 [31]Yu Z.H., Mackill D.J., Bonman J.M., McCouch S., Guiderdoni E., Notteghem J.L., and Tanksley S.D., Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.), Theor. Appl. Genet., 1996, 93, 859-863 [32]Yu Z.H., Mackill D.J., Bonman J.M., and Tanksley S.D., Tagging genes for blast resistance in rice via linkage to RFLP markers, Theor. Appl. Genet., 1991, 81, 471-476 [33]Zhu L.H. Location of unknown gene of rice blast resistance Using molecular markers, Chinese Science (B), 1994, 24(10), 1048-1052 [34]Zheng K.L., Qian H.R., and Zhuang J.Y., Tagging rice blast resistance genes via DNA Marker, ACTA Phytopathologica SINICA, 1995, 25(4), 307-313  相似文献   

2.
Through the efforts of the International Rice Genome Sequencing Project, the whole genome sequence office has been decoded (International Rice Genome Sequencing Project, 2005). This sequence information has provided new tools for genetics and has created a new paradigm of plant breeding. Many phenotypic traits of economic interest are controlled by multiple genes and often show complex and quantitative inheritance: Recent progress in rice genomics has had a great impact in the genetic dissection of such traits into single genetic factors. Such genetic factors can subsequently be identified at the molecular level by map-based strategies (Yano, 2001). So far, we have identified several genes involved in heading date (Yano et al., 2001), field resistance to rice blast, cool temperature tolerance (Takeuchi et al., 2001) and pre-harvest sprouting (Takeuchi et al., 2003), and genetic dissection of root morphology and yield-related traits is progressing. Working from the current status of genetic dissection, we have begun marker-assisted introgression of particular genes of interest into elite rice cultivars in Japan. Exploitation of economically important genes in natural variants will be essential to enhance the potential of new breeding strategies.  相似文献   

3.
Brown Planthopper Resistance Genes in Rice: from Germplasm to Breeding   总被引:1,自引:0,他引:1  
The brown planthopper (BPH), Nilaparvata lugens Stal (Homoptera: Delphacidae), is one of the most destructive and widespread insect pests of rice (Oryza sativa) that can be found throughout the rice-growing areas in Asia, causing significant yield loss in susceptible cultivars every year. In addition to causing physiological damage to the rice plant, BPH also causes indirect damage by acting as a vector for rice ttmgro virus, grassy stunt virus and ragged stunt virus. Planting the resistant variety can efficiently restrain the breaking-out of BPH and its damage to rice. Mapping and cloning the BPH resistance genes will be propitious to the development of resistant rice variety and understanding of BPH-resistance mechanism in rice.  相似文献   

4.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. Oryzae (Xoo) is one of the most serious diseases of rice. Ten races of the bacterium have been identified in the Philippines. Each race has specific virulence to varieties with different resistance genes, showing a gene-for-gene relationship in the host-pathogen interaction (Lee et al., 2003). So far, twenty-nine major genes have been identified (Lee et al., 1999). Due to emergence of the new races and genetic vulnerability of resistant varieties, the spreading of bacterial blight disease occurrence is increasing now in all areas of Korea. This study was carried out to find the gene identification and reaction of rice varieties to Korean and Philippine races ofXanthomonas oryzae, pv. oryzae.  相似文献   

5.
BPH 《分子植物育种》2007,5(2):177-177
BPH (Brown planthopper, Nilaparvata lugens Stal) is a major insect of rice and give a lot of damages around Korea, Japan and East-West Asia. Especially, Increase of the environmentally friendly cultivation in South Korea has caused the outbreak of BPH rapidly. But few resistant varieties in Korea have known until now. Utilization of resistance(R) genes in breeding programs has been the most effective and economical strategy for controlling insect resistance. Now, It is reported that BPH-resistant genes is about eighteen (Suet al., 2003). Especially, it has reported that Bphl gene is located on a long side of chromosome 12 and linked to bph2 (Sharma et al., 2004). Bph3 is located on a short side of chromosome 4 (Sun et al., 2005). But, because of no resistant germplasm to BPH in Japonica, it is very difficult to breed BPH-resistant variety with high grain quality.  相似文献   

6.
To discover genes essential for agronomicperformances of crops we initiated a program onrice functional genomics of important agronomictraits in rice in 1999.The program was fundedby the Ministry of Science and Technology of  相似文献   

7.
Low temperature is one of abiotic stresses limiting the geographical location suitable for growing corps and periodically account for significant losses in plant productivity, so it's important for agriculture to improve the cold resistance of corps. Many plants can acquire increased frost tolerance after a period of exposure to low, non-freezing temperature through a complex adaptive process called cold acclimation. In the past ten years, with the great advance in the researches of molecular mechanism of cold acclimation, the studies of genetic engineering for cold resistance in plants have also been carried out extensively. Currently, there are two kinds of genes used in plant cold-resistant genetic engineering, Which are protective genes and regulating genes. Many studies indicate both kinds of genes have good prospect for improving the cold resistance of plants. However, there are also many problems in this field to be solved immediately.  相似文献   

8.
9.
10.
<正>据中国科学院通报,2月2日,国际著名学术期刊《科学》在线发表了中科院上海植物生理生态研究所何祖华研究组与合作者完成的关于水稻持久广谱抗病的最新研究成果题为"Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance"的研究论文。该研究成功克隆了持久广谱抗稻瘟病基因  相似文献   

11.
稻瘟病是水稻重要病害之一,严重影响水稻的产量与品质。培育抗性品种是防治稻瘟病最经济、环保的方式。稻瘟病抗性基因的鉴定与挖掘是开展抗病育种的基础与前提。本课题组前期对419份广西水稻地方品种核心种质进行简化基因组测序,获得208,993个高质量SNP标记。本研究采用苗期喷雾接种方法,研究了该419份核心种质对7个稻瘟病生理小种的抗性,并根据表型和基因型数据,利用一般线性模型(general linear model,GLM)和混合线性模型(mixed linear model,MLM)进行全基因组关联分析。2种模型下共检测到20个位点,其中GLM检测到20个位点,MLM检测到1个位点,Chr12_10803913位点在2种模型下都检测到。17个位点与前人定位的基因/QTLs重叠,其余3个是新位点,分别为Chr3_18302718、Chr3_18302744及Chr5_10379127位点。在20个显著关联位点上下游各150 kb的基因组区域中共筛选出候选基因323个,初步确定8个候选基因与抗病相关,其中LOC_Os12g18360(Pita)、LOC_Os12g18729(Ptr)为已知克隆的基因,LOC_Os03g32100、LOC_Os03g32180和LOC_Os05g18090为新位点附近筛选到的候选基因。本研究结果为稻瘟病抗性位点挖掘与稻瘟病相关基因克隆提供了科学依据。  相似文献   

12.
水稻稻瘟病抗性基因定位、克隆及应用   总被引:8,自引:1,他引:7  
稻瘟病是水稻生产中最严重的病害之一,严重影响水稻的产量和品质,由于稻瘟菌小种的变异快,垂直抗性基因难以持续控制稻瘟病的危害,因此,定位和克隆广谱持久的稻瘟病抗性基因,揭示其作用的分子机理,结合分子育种技术培育高产优质多抗的水稻新品种将是今后解决稻瘟病抗性育种最有效的途径.本文综述了水稻和稻瘟病菌之间的互作,稻瘟病抗性的分子机制,稻瘟病抗性基因定位,目前已经定位了73个稻瘟病质量抗性基因,其中9个稻瘟病抗性基因已经被克隆并进行了深入的研究,此外定位了至少11个QTL以及稻瘟病抗性基因克隆和功能分析,及其在水稻抗病育种中的应用.  相似文献   

13.
稻瘟病是我国水稻主产区的重要病害之一, 其主效抗性基因Pi-ta和Pi-b在我国很多稻区表现广谱持久的稻瘟病抗性, 被广泛应用于我国的水稻育种和生产。本研究选用稻瘟病抗性基因Pi-ta和Pi-b及其等位基因的功能标记, 在对22份分别已知抗病基因Pi-ta和Pi-b以及感病基因pi-ta与pi-b组成的水稻品种检测验证基础上, 建立了2套稻瘟病基因多重PCR体系: 体系I同时检测抗病基因Pi-ta与Pi-b, 体系II 同时检测感病基因pi-ta与pi-b, 并利用2套体系对336份高世代育种材料进行检测, 与单标记检测结果比较, 表现稳定可靠, 重复性好。本研究构建的抗稻瘟病基因分子标记多重PCR体系可用于水稻种质资源的快速评价和抗稻瘟病分子标记辅助育种。  相似文献   

14.
转基因改良水稻抗稻瘟病的策略及其进展   总被引:4,自引:0,他引:4  
利用转基因技术是改良水稻稻瘟病抗性的有效途径。已有研究证实通过某些抗病基因、抗真菌蛋白基因、杀菌肽基因的转基因,可以培育出获得对稻瘟病广谱抗性的水稻品种。本文就以上几个方面的进展评述了水稻稻瘟病抗性的分子改良策略。  相似文献   

15.
为明确黑龙江省粳稻品种中稻瘟病抗性基因的类型、评价品种及抗瘟基因利用价值,利用8个已克隆主效抗性基因PitaPiaPiz-tPibPikmPi9PiiPid3的特异性分子标记,结合402个黑龙江省各稻区的菌株接种供试品种的抗性表型,对20个黑龙江省粳稻品种的抗性基因型及抗病性进行分析。结果显示,Pia检出率最高,20个粳稻品种均检测到该基因,其次是PitaPiz-t,检出率为80%;PiaPitaPiz-tPikmPi9在不同生态型品种育种中得到了较为广泛的应用,PibPiiPid3在不同生态类型品种间分布存在差异,仅在第1积温带的品种中发挥较好作用;唯一携带Pid3且具有Pita+Pia+Piz-t+Pib+Pii+Pid3基因型的龙洋16抗性表现最好,抗性频率高达93%;携带Pita+Pia+Piz-t基因组合的品种均表现出较好的抗病性,对黑龙江省粳稻品种的抗瘟贡献较大。揭示了黑龙江省20个粳稻品种的稻瘟病主效抗性基因类型及其对稻瘟病抗性的贡献,为寒地水稻种质资源的抗病性筛选和广谱抗病基因的利用提供重要依据。  相似文献   

16.
整理国际注册或期刊报道的已定位Pi基因,并在物理图谱上锚定,为抗稻瘟病基因-Pi基因的精细定位、图位克隆提供研究基础.利用www.gramene.org网站公布的Pi基因的分子标记,在测序图谱Gramene Annotated Nip-ponbare Sequence 2006上进行物理图谱锚定.通过本研究把已定位的89个Pi基因的42个锚定到其物理图谱的28个位点上.这42个Pi基因,除了已克隆的11个基因外,其余的均可作为Pi克隆基因的候选基因作进一步的研究.  相似文献   

17.
水稻第11染色体抗稻瘟病基因研究进展   总被引:1,自引:0,他引:1  
随着稻瘟病抗性基因的不断发掘与分离克隆,抗病基因在水稻基因组遗传图谱和物理图谱的分布及不同类型抗病基因的结构特点逐渐明了。目前鉴定的水稻抗稻瘟病基因主要分布在除第3染色体以外的其余染色体上,其中第11染色体上分布的稻瘟病抗性基因数目至少有24个。此文概述了水稻抗瘟病基因在基因组的分布和抗性基因的结构特点,重点介绍了水稻基因组第11染色体稻瘟病抗性基因的定位、克隆以及抗病基因类似物和抗性基因在该染色体上的分布特点,并对稻瘟病抗性基因在水稻育种中的应用提出了展望。  相似文献   

18.
稻瘟病抗性基因的分子定位及克隆   总被引:7,自引:0,他引:7  
简述了稻瘟病抗性的两种类型,着重阐述了稻瘟病主效抗性基因的分子定位和克隆的研究进展,概述了主要分子标记的种类及其特点,分析了图位克隆法在克隆植物抗病基因中的应用,对其存在的技术瓶颈进行了探讨,并指明了克服这些技术难点的途径。  相似文献   

19.
利用MAS手段改良恢复系R838稻瘟病抗性研究   总被引:1,自引:1,他引:0  
为了提高杂交水稻恢复系R838稻瘟病的抗性水平,利用MAS手段将抗稻瘟病基因pigm导入目标受体,通过连续多代回交并对其回交后代进行分子标记检测或稻瘟病抗性表型鉴定。筛选回交高世代群体自交,并用三系不育系进行测配。结果表明:F1目标基因占有率为52.4%,随着回交世代的增加,其所含目标基因的占有率稳定在50%左右,通过回交高世代群体苗瘟表型鉴定,苗叶瘟抗性3~9级,株系间差异明显;用三系不育系配组,F1苗叶瘟抗性随入选父本抗性提高而提高,且农艺性状与R838基本保持一致。因此,通过分子标记辅助育种技术,用pigm稻瘟病抗性基因改良目标受体的稻瘟病抗性是一个有效途径。  相似文献   

20.
在福建省沙县稻瘟病重发区,对1092份水稻材料进行连续3年的田间苗叶瘟和穗茎瘟的自然鉴定,供试材料中高抗、抗、中抗、中感、感和高感材料分别为124、99、121、545、156和47份。利用14个与抗性基因紧密连锁的SSR标记及3个源于抗病基因序列的显性标记,对其中130份抗性较好的材料进行了遗传背景分析,14个SSR标记引物共扩增到87个等位位点,每一标记的等位位点变幅为2~13个,平均为6.2个,每个SSR位点的多态性信息含量(PIC)变化范围为0.379~0.9,平均为0.695;不同抗性亲本材料出现抗性基因的标记为2~9个,其中与抗病基因Pi35、Pi-yt及Pi-ta相对应的标记RM1003、RM202和YL155/YL87的概率较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号