首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C.R. Stockdale   《Livestock Science》2008,116(1-3):191-202
The objective of the experiment reported here was to establish the effect of canola meal supplements of different protein degradability on the performance of grazing dairy cows with different body condition scores (BCS) in early lactation, and to compare this with feeding a cereal grain supplement instead. The experiment included a total of 72 cows in six treatments in a 2 * 3 factorial design, incorporating two BCS at calving (4.1 and 5.6 units on an 8-point scale), and three early lactation pelleted supplements. The three pelleted supplements were 100% wheat (wheat supplement), 50% wheat and 50% untreated mechanically extracted canola meal (a rumen degradable protein supplement), and 50% wheat and 50% canola meal that had been subjected to additional heat and pressure (a rumen undegradable protein supplement). It was hypothesised that fat cows would perform best with the treated canola meal supplement, which provided most rumen undegradable protein, whereas the type of protein would not be important for thin cows, and neither would the type of supplemental energy. Cows grazed pasture after calving at a daily pasture allowance of 35–40 kg DM/cow and were offered 6 kg concentrates each day. Cows were fed these diets for 92 days on average, from calving until three weeks into the mating period. Both canola meal-based supplements resulted in higher (P < 0.05) daily milk production than the wheat supplement (33.3 and 34.0 v. 30.5 kg/cow) in both thin and fat cows. Body condition score at calving positively (P < 0.05) affected average milk yield (31.6 v. 33.7 kg/cow), however, there was a time × BCS × supplement interaction whereby the fatter cows benefited from the use of either of the canola meal supplements for a longer period than did the thin cows. Average milk fat concentrations were greater (P < 0.05) where the canola meal supplements were fed (39.3 and 39.6 v. 35.6 g/kg), and in fat cows relative to thin cows (40.0 v. 36.3 g/kg). Serum urea concentrations were significantly (P < 0.05) lower in cows fed wheat than in those fed either of the canola meal supplements (3.1 v. 4.3 and 4.2 mmol/L). Serum β-hydroxybutyrate concentrations were lowest (P < 0.05) where wheat pellets were fed, and highest (P < 0.05) where treated canola meal pellets were fed, and plasma glucose concentrations were highest with wheat and lowest with the treated canola meal pellets. Thus, the hypothesis was not supported by the results of this experiment.  相似文献   

2.
The objectives of this study were to examine the effect of parity and days in milk (DIM) on dry matter intake (DMI) and actual milk yield (MYAct) of grazing spring calving dairy cows in early lactation (< 100 DIM) and to develop equations to predict DMI and milk yield for grass based systems of milk production. A dataset containing 335 observations from 134 Holstein Friesian dairy cows was assembled from two early lactation grazing studies. Observations were available for primiparous (n = 130) and multiparous (n = 205) cows during periods of DMI measurement using the n-alkane technique. Animal performance was divided into two classes of DIM: less than 50 DIM (< 50 DIM) or between 51 and 100 DIM (> 50 DIM). Parity and DIM had a significant effect on grass DMI (GDMI), total DMI (TDMI), MYAct and milk composition. TDMI increased with parity and DIM and ranged from 13.4 kg/cow per day (primiparous animals, < 50 DIM) to 20.1 kg/cow per day (multiparous animals, > 50 DIM). Actual MY increased with parity and decreased with DIM (range: 24.1 kg/cow per day (primiparous animals, > 50 DIM) to 33.0 kg/cow per day (multiparous animals, < 50 DIM)). Multiparous cows had greater bodyweight (BW) and lower BCS than primiparous cows. In the early lactation period a number of variables had a significant effect on GDMI, TDMI and milk yield. These predictor variables included BW, BCS, potential milk yield (MYPot), DIM, daily herbage allowance (DHA; > 4 cm), concentrate level and parity. The equations accounted for 79%, 83% and 86% of the variation in GDMI, TDMI and milk yield, respectively. Actual milk yield was always below the MYPot of the cows, the mean difference was 5.8 kg/cow per day. As DHA and concentrate level increased, the difference between MYAct and MYPot reduced. This study supports the concept that immediately post-calving offering a grass based diet with a medium level of concentrate supplementation is sufficient to support high milk production in grazing dairy cows.  相似文献   

3.
The objective of this study was to investigate the effect of daily herbage allowance and concentrate supplementation level offered at approximately 40 and 80 days in milk (DIM) and the carryover effects at 120 DIM on the production performance of spring calving dairy cows. Sixty-six (30 primiparous and 36 multiparous) Holstein–Friesian dairy cows (mean calving date — 7 Feb ± 9.9 days) were randomly assigned to a 6 treatment (n = 11) grazing study. The experiment was a randomised block design with a 3 × 2 factorial arrangement of treatments (3 daily herbage allowances (DHA's; approximately 13, 16 and 19 kg DM/cow/day; > 4 cm) and 2 concentrate allowances (0 and 4 kg DM/day). Treatments were imposed from 21 February to 8 May. Following this period (subsequent 4-weeks) animals were offered a daily herbage allowance of 20 kg DM/cow/day and no concentrate. Milk production, total dry matter intake (TDMI), energy balance (EB) and blood metabolites were measured on three occasions — at approximately 40, 80 and 120 days in milk, R1, R2 and the carryover period, respectively. Cows offered a low DHA had a lower post-grazing sward height but increased sward utilisation (> 4 cm) during R1 and R2, there was no difference during the carryover period. Concentrate supplementation increased post-grazing sward height by 11% during R2 but had no effect during R1 and the carryover period. Daily herbage allowance had no effect on milk yield or composition during R1 however a low DHA tended to reduce milk yield in R2. Concentrate supplementation increased milk and solids corrected milk (SCM) yield by 4.1 and 2.8 kg/cow/day, respectively during R1 and also increased R2 milk production performance, this effect extended into the carryover period. Offering a low DHA restricted grass dry matter intake (DMI) during R1 and R2 yet concentrate supplementation significantly increased total DMI (2.3 (R1) and 3.0 (R2) kg DM/cow). Animals offered a low DHA had a significantly lower bodyweight (BW) than those offered a medium or high DHA during P1 and P2. Concentrate supplementation increased BW during P1 and P2 (+ 9 and + 14 kg/cow, respectively). There was no effect of treatment on BW during P3. There was no effect of DHA on EB in R1; during R2 animals offered a low DHA had the lowest EB. Concentrate significantly increased EB in R1 and R2 and increased plasma glucose concentration while it decreased plasma NEFA and BHB concentrations. The results of this study indicate that animals should be offered a low DHA up to 80 DIM after which DHA should be increased however animals should also be supplemented with concentrate during the early post-partum period.  相似文献   

4.
N utilization at cow and field level was examined over two grazing periods of 30 days with 64 Holstein dairy cows. At cow and field level the effect of sward type (diploid vs. tetraploid perennial ryegrass, both mixed with white clover) and compressed sward height (6 vs. 10 cm) was examined. At dairy cow level the effect of urea supplementation (0 vs. 145 g/day) and energy supplementation strategy (soy hulls(am)/barley(pm) vs. barley(am)/soy hulls(pm)) was also examined. Cows grazed grass/clover swards for 7.5 h/day and were restrictively fed in the barn (3.2 kg dry matter (DM) in maize silage, 3.6 kg ground barley, 3.6 kg soy hulls per day). In none of the two periods were yield of milk (Period 1: 30.9 kg, Period 2: 25.4 kg), fat, protein and lactose significantly affected by sward type, sward height, urea supplementation or energy supplementation strategy. Urea supplementation increased the urea concentration in milk. Also low sward height and feeding soy hulls(am)/barley(pm) increased the urea concentration, probably due to a higher protein content in the sward and a higher grass intake, respectively. N utilization at cow level was highest with high sward height and no urea supplementation. Feeding soy hulls(am)/barley(pm) increased milk yield numerically but was counterbalanced by an equivalent increase in estimated grass intake, and supplementation strategy seemed therefore not to affect N utilization. At field level the N surplus was higher on diploid than on tetraploid swards (50 and 21 kg N/ha) due to a higher clover content in the diploid swards, whereas the difference in N surplus between sward heights was minimal (32 and 38 kg N/ha). Estimated N removal from the pasture in the grazing periods (intake minus excretion) increased by 5.2 kg N/ha when feeding soy hulls(am)/barley(pm), whereas with no urea supplementation the net N removal increased by only 2.5 kg N/ha. It was concluded that N utilization in dairy cows can be improved by decreasing N intake from both herbage and supplementary concentrate without compromising milk yield, and that N balance at field level could be improved by strategic barn feeding.  相似文献   

5.
To evaluate milk production and milk fatty acid (FA) composition and conjugated linoleic acid (CLA) content, 75 Sicilo-Sarde ewes were used on three dietary treatments during 89 days. Two groups were conducted on rotational grazing in separate pastures of green barley grass (GB group) or perennial ryegrass (RG group) and receiving daily 300 g of concentrate/ewe. A third group was conducted in feedlot (FL group) on oat hay and silage and receiving 500 g of the same concentrate per ewe per day. Milk production did not differ among GB and RG pasture treatments (617 ml/day) but it was higher (p < 0.01) than FL one (363 ml/day). Milk fat and protein content were higher for ewes in FL than for ewes raised on both pasture treatments (88.8 and 56.7 vs. 74.5 and 54 g/kg for fat and protein, respectively). However, fat and protein yields were higher for pasture groups than FL one. The palmitic, oleic, miristic, stearic, and caprinic acids were dominant for all regimens. Short-chain FA (C4:0–C10:0) did not differ among all treatments. The medium chain FA content was significantly higher in milk fat from FL group. Conversely, the long chain ones increased for grazing groups. Milk from pasture groups had a higher C18:3 proportion than that from FL sheep (4.5 vs. 2.7 g/1000 g). The CLA content was significantly (p < 0.001) higher for grazing groups than for FL one (7.3 and 10.3 for GB and RG, respectively, vs. 2.4 g/1000 g for FL). Pasture-based diets increased the concentrations of long-chain unsaturated FA and desirable FA in milk fat.  相似文献   

6.
John R. Roche   《Livestock Science》2007,110(1-2):12-24
Sixty-eight multiparous grazing dairy cows were randomly allocated to two precalving pasture allowances to achieve differential dry matter intakes (DMI) for 29 ± 7.7 d precalving (Low or High DMI; 4.8 or 11.9 kg DM). At calving, cows within each precalving treatment were randomly allocated to one of two levels of feeding (Low or High DMI; 8.6 or 13.5 kg DM) for 35 d postcalving in a completely randomized design and a 2 × 2 factorial arrangement of treatments. Following treatments all cows grazed together and were fed pasture and pasture silage. Daily milk yields were recorded, and fat, protein and lactose concentrations determined weekly for 15 weeks. Blood was sampled weekly pre- and postcalving and analysed for indicators of energy status, growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Body condition score (BCS) at calving was reduced by precalving restriction (P < 0.001; 2.8 and 3.0 for precalving Low and High treatment groups, respectively). Precalving restriction reduced milk fat production by 8.4% during the first 5 weeks postcalving, but differences were not significant subsequently. Postcalving feed restriction reduced yield of fat corrected milk (FCM), fat and protein by 23, 21 and 28%, respectively, during the first 5 weeks postcalving. Decreased (P < 0.05) yields of FCM, fat and protein (11, 10 and 9%, respectively) were also evident for 10 weeks after the feed restriction finished. There was a tendency (P < 0.1) for a precalving × postcalving DMI interaction in milk protein yield during the first 5 weeks of lactation with no effect of precalving level of feeding in cows that were restricted postcalving. The plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyrate (BOH) and GH were elevated in restricted cows precalving, and IGF-1 concentration was reduced. Plasma NEFA and BOH concentrations were elevated postcalving in restricted cows, but no effect of postcalving DMI on GH or IGF-1 concentration was evident. Results suggest that under grazing systems milk production responses to precalving DMI are small, but energy restrictions in early lactations result in significant carryover effects in milk production.  相似文献   

7.
The objective of this study was to evaluate the effect of imposing different milking frequencies for the first 4 weeks of lactation on energy balance, blood metabolic profiles and reproductive performance. The milking frequencies imposed were once daily for the first 4 weeks of lactation and twice daily subsequently (X1), twice daily for the entire lactation (X2) and three times daily for the first 4 weeks of lactation and twice daily subsequently (X3). Two weeks prior to the first expected calving date, sixty-three multiparous, Holstein-Friesian cows, were allocated to treatments based on expected calving date, parity (lactation number = 2 and lactation number > 2), BCS and BW. Mean DMI was lower (P < 0.05) on X1 than X2 (15.7 and 17.1 kg/day) over the first 4 weeks of lactation, but DMI on X3 was not different to either. Milk yield was lower (P < 0.05) on X1 than on X2 and X3 (24.1, 31.9 and 31.4 kg/day) from weeks 1 to 4 and at week 10 of lactation (30.9, 33.9 and 33.7 kg/day) but was not different at week 20. Yield of milk constituents followed the same pattern as milk yield. Milking frequency had no significant effect on milk fat or protein concentration but milk lactose concentration was higher (P < 0.05) on X1 than on X2. Cows on X1 experienced less (P < 0.05) negative energy balance than those on X2 and X3 from weeks 1 to 4, with no difference between X2 and X3. Cows on X1 lost less BW (P < 0.05) from weeks 1 to 4 and lost less BCS up to day 73 of lactation than cows on X2 and X3. Plasma NEFA and BHB concentrations tended to be lower and plasma glucose tended to be higher on X1 than on X2 and X3 from weeks 1 to 4, while plasma insulin was higher on X1 than on X2 and X3 for the first 2 weeks of lactation. There was no difference between treatments in any reproductive performance variable measured. These results indicate that reduced milking frequency decreases milk yield and improves energy balance and metabolic status in early lactation.  相似文献   

8.
It has been shown that the cis 9, trans 11 isomer of conjugated linoleic acid (CLA) can be increased in milk by supplementation with fish oil and vegetable oils. Feeding a high level of oil, however, can impact negatively on gross milk composition. The principal aim of this study was to determine if relatively low levels of fish oil or sunflower oil, either alone or in combination, offered to dairy cows on pasture would increase the C18:2 cis 9, trans 11 CLA concentration in milk. Forty autumn-calved cows on a diet of grazed grass were assigned to 4 supplementation treatments: (i) No supplement (P), (ii) 255 g/day of sunflower oil (SO), (iii) 255 g/day of sunflower oil + 52.5 g/day of fish oil (SOFO), and (iv) 105 g/day of fish oil (FO). The fish oil was supplied in a proprietary product called Omega-3 Supplement which is a mixture of marine oils and an extracted oilseed meal and contains 500 g/kg of oil. The oils were fed in a concentrate mixture, which was offered at a rate of 3.0 kg/cow per day. The production of the cows was measured for 54 days and the milk fatty acid composition was determined on day 0 (immediately before the supplements were introduced) and on days 14, 28 and 42 after the treatments were imposed. Supplementation increased the yield of milk (P < 0.01), protein (P < 0.05) and lactose (P < 0.001), decreased milk fat (P < 0.05) and protein (P < 0.01) concentrations and increased (P < 0.01) lactose concentration. Type of oil did not significantly affect any production variable. The concentration of C18:1 trans 9 + C18:1 trans 11 (mainly C18:1 trans 11) (P < 0.001) and C18:2 cis 9, trans 11 CLA (P < 0.01) were greater on supplemented treatments than on P and the concentration of both were greater (P < 0.05) on FO than on SO. The results confirm that the concentration of C18:2 cis 9, trans 11 CLA can be increased further, from an already relatively high concentration in milk from pasture, by offering supplements containing a low level of fish oil either alone or in combination with sunflower oil.  相似文献   

9.
The objective of this study was to assess the effects of restricting access time to pasture and time of grazing allocation on grazing behaviour, daily dry matter intake (DMI), rumen fermentation, milk production and composition in dairy cows. Twenty-one autumn-calving Holstein cows were assigned to one of the following 3 treatments: providing access to a daily strip of pasture for either 8 h between 07:00 and 15:00 h (T7–15), 4 h between 07:00 and 11:00 h (T7–11), or 4 h between 11:00 and 15:00 h (T11–15). The experimental period consisted of 3 weeks of adaptation and 6 weeks of measurements. Cows were offered a daily herbage allowance of 18 kg DM/cow to ground level, 6.1 kg DM/day of a ground sorghum grain-based supplement and 5.2 kg DM/day of maize silage. Milk yield was greater for cows with 8 h access time to the pasture (25.4 vs. 24.1 for 8 and 4 h access time, respectively). Milk yield was not different between cows that access early (T7–11) or late (T11–15) to the grazing session. Milk protein yield was greater for cows with 8 h access time (0.75 kg/d) vs. 4 h access time treatments (0.72 kg/d). Cows with late access time to grazing in the morning produce more protein (0.74 kg/d) than cows with early access to the pasture (0.70 kg/d). Duration of access had a significant effect on herbage DMI (8.3 vs. 6.6 kg/d, for 8 and 4 h access, respectively), but there was no significant effect of time of grazing allocation. Intakes of concentrate and maize silage DM did not differ between treatments.  相似文献   

10.
Spring-born Hereford x Angus heifers (n = 206) were used to determine effects of energy supplementation programs and amount of starch in the diet on incidence of puberty. In Exp. 1, heifers (205 +/- 5 kg; n = 68) grazing dormant native pasture were fed 0.9 kg/d (as-fed basis) of a 42% CP supplement from November until February 14. Heifers were stratified by weaning weight and allotted randomly to treatment before breeding (May to July). Treatments were 1) 0.9 kg (as-fed basis) of a 42% CP supplement/d and pasture (control); 2) a high-starch (HS) diet (73% corn; 53% starch) fed in a drylot for 60 d (HS-60); 3) a HS diet fed in drylot for 30 d (HS-30); or 4) a low-starch (LS) diet (49% corn; 37% starch) self-fed on pasture for 30 d (LS-30). The HS-60 and HS-30 heifers were limited-fed to gain 0.9 kg/d, and the LS-30 heifers had ad libitum access to the diet. High-starch-60 and LS-30 heifers were heavier (P < 0.05) than control and HS-30 heifers at the beginning of the breeding season. Thirty-one, 25, and 26% more HS-60 heifers were pubertal (P < 0.05) on May 1 compared with LS-30, HS-30, and control heifers, respectively. At puberty, HS-60 heifers were 24 and 22 d younger (P < 0.05) than LS-30 and control heifers, and 31 kg lighter (P < 0.01) than LS-30 heifers. In Exp. 2, heifers grazed dormant pasture and were fed 0.9 kg (as-fed basis) of a 42% CP supplement/d from weaning in October to late February; then heifers were assigned randomly to treatments for 60 d before the breeding season. In two years, control heifers (n = 46) grazed pasture and received 0.9 kg of SBM supplement/d; LS (n = 46) heifers were self-fed a distiller's grain and soybean hull-based diet in drylot; and HS heifers (n = 46) were limited-fed a corn-based diet in drylot. During treatment, HS and LS heifers had greater weight gains than control heifers. Pubertal BW (313 +/- 6 kg) was not influenced by treatment, but HS and LS heifers were younger (P < 0.03) than control heifers at puberty. During a 60-d breeding period, the incidence of puberty was greater (P < 0.05) for HS and LS heifers than for control heifers and was greater (P < 0.05) in HS than in LS heifers in Year 1. Feeding a LS or a HS diet for 30 d before breeding may be inadequate to stimulate puberty in beef heifers, but feeding a diet with a greater amount of starch for 60 d before breeding may increase the incidence of puberty during breeding of heifers that have inadequate yearling weight.  相似文献   

11.
The effects of supplemental polyethylene glycol (PEG) on feeding behaviour, diet composition, intake and milk production were studied in late lactating Sarda goats browsing on a lentisk-based bushland with different herbage cover. The goats were allotted to two groups that browsed 7 h daily on 2 plots characterised by different cover proportions of woody and herbaceous species. These proportions were 90% woody vs. 10% herbaceous species in one plot (W — woody, close bushland with low herbage cover) and 70% woody vs. 30% herbaceous species in the other plot (H — herbaceous, open bushland with high herbage cover). Each group was divided into two sub-groups: one fed with 50 g day− 1 of PEG 4000 MW (PEG+) and the other receiving no PEG supplementation (PEG). The feeding behaviour was different between groups; goats in herbaceous plot (H-goats), had a longer grazing time, expressed as percentage of total observation time than the counterparts (64% vs. 58%, P < 0.05). The intake was not affected by the treatments. The percentage of the species eaten by the goats was different in the two groups: H-goats ate more herbaceous and less woody species than goats in woody plot (W-goats). In each group the PEG tended to affect the botanical composition of the diet. PEG dosed goats ate more tanniferous species than control counterparts (P = 0.12). The average daily milk production was 473, 591, 541 and 589 ml, respectively in W-PEG−, W-PEG+, H-PEG and H-PEG+ sub-groups with significant effect of herbage cover × PEG dose interaction (P < 0.05). The milk urea was affected by herbage cover (P < 0.001) and PEG supplementation (P < 0.001). In conclusion, the effect of PEG is strictly dependent on pasture composition. In open bushland, featured by moderate woody cover, the effect of PEG is more intense on diet selection, due to its marked post-ingestive effects. In close bushland, characterised by high proportion of tanniferous species prevails the efficacy of PEG as a performance booster.  相似文献   

12.
This experiment was conducted with stocker steers to determine the effects of supplementary fiber and grain on ruminal acid concentrations and OM intake following abrupt dietary change to lush, primary-growth wheat (Triticum aestivum) pasture and to measure the effects of those supplements on weight gain at different levels of herbage mass (HM). Each of four irrigated wheat pastures (2.4, 3.6, 4.9, and 6.1 ha) was stocked with nine Angus crossbred steers (mean = 189 kg). In each pasture, three steers were individually fed a daily supplement of 11.3 g of cottonseed hulls (CSH)/kg BW(.75), three steers were fed a supplement mixture of 11.3 g CSH/kg BW(.75) and 8.5 g corn grain/kg BW(.75), and three steers remained as controls. Body weight and HM changes were measured at 28-d intervals throughout the experiment. Ruminal samples for VFA determination were collected twice during the 1st wk on pasture. Organic matter intake calculations were based on fecal output and OM digestibility estimates made during the 2nd wk on pasture. Fecal outputs were estimated from nonlinear least squares analyses using a two-compartment rumen model of excretion patterns of Yb following a single oral dose. Digestibility of OM was estimated using indigestible NDF in feed and feces as an internal marker. Dietary supplements had no detectable effect on ruminal VFA characteristics. The magnitude of changes in ruminal acetate:propionate ratios between d 3 and 7 on pasture was significantly and negatively related to ADG during the first 28-d growth measurement period. Body condition scores taken on d 0 also had a significant, negative relationship to ADG. Average fecal output was greater for steers fed supplements (36 g/kg BW(.75)) than for control steers (30 g/kg BW(.75)) (P < .03). The supplements also significantly reduced estimates of total diet OM digestibility. However, supplements had no measurable effect on BW changes. Herbage mass up to 1,000 kg/ha had a significant and positive effect on ADG, which was 1.44 kg during Period 1, when HM was apparently not limiting in any pasture. The deduced threshold level of the influence of HM on ADG was 850 kg/ha. Under the conditions of this experiment, the effects of supplemental fiber and(or) grain on fecal output and OM digestibility were detected. However, in the amounts fed, these supplements had no detectable effect on ADG at any level of HM.  相似文献   

13.
The effect of including high or low tannin forage peas as an alternative to soyabean meal on performance and N efficiency was investigated using 18 dairy cows in two Latin square design studies. Two varieties of forage pea; Racer (coloured flowers; high tannin) and Croma (white flowers; low tannin), were ensiled 12 weeks post sowing. The in situ degradability characteristics of the pea silages were determined using 4 cannulated sheep. The low tannin forage had a higher soluble N (a) fraction and a greater extent of degradation (a + b), resulting in a greater amount of N being predicted to be released in the rumen than the high tannin forage. In experiment 1, cows were fed one of three treatments in each of 3 periods of 28 d duration in a Latin square design; grass silage/whole-crop wheat (0.50:0.50, DM basis) and 8 kg/d of a high protein concentrate (GWH); grass silage/whole-crop wheat/high tannin forage pea silage (0.25:0.25:0.50 respectively, DM basis) and 8 kg/d of a high protein concentrate (HTH) or 8 kg/d of a low protein supplement (HTL). The inclusion of forage peas increased (P < 0.05) DM intake by 1.2 kg DM/d, but there was no effect of dietary treatment on milk yield (average of 23.0 kg/d), composition or live weight change. The efficiency of use of dietary N (N output in milk/N intake) was highest (P < 0.001) in cows when fed GWH (0.289) and lowest in HTH (0.234). In experiment 2, cows were fed one of three treatments in each of 3 periods of 28 d duration in a Latin square design; grass silage/whole-crop wheat (0.50:0.50, DM basis) and 8 kg/d of a high protein concentrate (GWH); grass silage/whole-crop wheat/low tannin forage pea silage (0.25:0.25:0.5 respectively, DM basis) and 8 kg/d of a high protein concentrate (LTH) or 8 kg/d of a low protein concentrate (LTL). Compared with GWH, the inclusion of forage peas increased (P < 0.05) DM intake by 2.0 kg/d, but there was no effect of dietary treatment on milk yield (average of 24.5 kg/d). Milk fat content was highest (P < 0.05) in cows when fed LTL (45.7 g/kg) and lowest in LTH (41.9 g/kg), but there was no effect (P > 0.05) of treatment on daily fat yield or any other milk component. The efficiency of dietary N use was highest (P < 0.001) in cows when fed GWH (0.300) and lowest in LTH (0.234). It is concluded that either high or low tannin forage pea silages can replace approximately 1.1 kg/d of soyabean meal in the diet of mid-late lactation dairy cows without affecting animal performance, but N efficiency for milk production is decreased.  相似文献   

14.
Small-scale dairying is an option for campesinos in Mexico. The costs of feeding are high and strategies based on quality forages are a priority. The performance, agronomic variables and feeding costs were evaluated for dairy cows continuously grazing perennial ryegrass–white clover for 9 h/day (PRG) or fed cut herbage from annual ryegrass for 8 weeks followed by 9 h/day for 6 weeks on a tethered rotational grazing pattern (ARG). All cows received 3 kg/day of an 18% crude protein (CP) concentrate. A 14-week split-plot on-farm experiment was designed with 10 cows from two participating farmers, and 1.5 ha per strategy. Milk yield was recorded weekly and milk composition, live weight and body condition score were recorded every 14 days. Net herbage accumulation was greater for ARG (8222 kg organic matter (OM)/ha) than for PRG (5915 kg OM/ha) (p < 0.05), with higher CP in PRG (p < 0.05). Milk yield was 19 kg/cow per day for PRG and 15.9 kg/cow per day for ARG (p > 0.05). Over 14 weeks, PRG produced 1422 kg more milk. There were no differences for live weight or condition score (p > 0.05), but linear regression shows a live weight gain of 0.200 kg/cow per day for PRG. Protein and fat content showed no differences (p > 0.05), but milk fat content in PRG was below standard. ARG had 60% higher costs, and margins were 38% higher in PRG. ARG has a place in rain-fed fields. The results provide viable options for improving these systems that may be suitable in their socio-economic context and their social and personal objectives.  相似文献   

15.
Sixty cows (40 multiparous and 20 primiparous) averaging 140 days in milk (DIM) were assigned to five treatments to evaluate the effect of pasture allowance and supplements of a) maize silage b) high crude protein concentrate and, c) low crude protein concentrate on milk production and nitrogen (N) excretion. Two of the treatments (HG and LG) were offered herbage only (allowances of 20 and 15 kg dry matter (DM) per cow/day, respectively) while the remaining three treatments were offered a herbage allowance of 15 kg DM per cow/day plus 4 kg DM per cow/day of maize silage (M), a high CP concentrate (CP concentration of 194 g/kg DM) (HC), or citrus pulp (CP concentration of 69 g/kg DM) (LC). Total DM intake (DMI) was similar for HG, M, HC, and LC but was lower for LG (15.2 kg DM per cow/day) than HC (17.4 kg DM per cow/day). The reduction in pasture DMI per kg of supplement DM ingested was 0.44, 0.45, and 0.54 kg for cows offered maize silage, high CP concentrate, and low CP concentrate, respectively. Milk yield was greater for the supplemented treatments (23.7–24.7 kg/day) than for LG (20.7 kg/day) but not for HG (23.2 kg/day). Milk fat concentration was greater for HC (35.3 g/kg) than for HG, M, and LC but not greater than LG, while milk protein concentration was greater for HG (34.8 g/kg) than for LG and HC but not greater than M and LC. The greatest levels of N and PDIN intake were recorded for HG (662 and 2502 g/day) and HC (654 and 2506 g/day) which were greater than LC but not greater than LG and M. Treatment HC recorded the highest PDIE intake (1743 g/day) which was greater than LG, M and LC but not greater than HG. Output of N in milk was greater on HC (134 g/day) than on LG but was not greater than on HG, M, and LC. Faecal N excretion was greater on HG (171 g/day) than on all other treatments while estimated urinary N excretion was greater on HG and HC than LC (320 g/day). Treatment LC had a higher proportion of N output in milk (0.23) than treatment LG but not higher than HG, M and HC treatments. Urinary N expressed as a proportion of total N excretion was lower for HG (0.68) than all other treatments. The results of this study show that there is a large response in milk production to supplementing cows on a restricted grass allowance and that cows offered low CP supplements had similar levels of production to those offered high CP supplements. Nitrogen utilisation was improved by offering supplements of lower CP content.  相似文献   

16.
The aim of this study was to evaluate the effect of herbage allowance (HA) and type of silage supplemented (TS) on milk yield, dry matter intake (DMI) and metabolism of dairy cows in early lactation. Thirty‐six Holstein‐Friesian dairy cows were allocated to four treatments derived from an arrangement of two HA (LHA = 17 or HHA = 25 kg of DM/cow/day) and two TS (grass (GS) or maize (MS)). Herbage allowance had no effect on DMI or milk yield. Rumen pH and NH3‐N concentration were not affected by HA. The efficiency of microbial protein synthesis in the rumen (microbial protein (MP)) was affected by HA with 21.5 and 23.9 g microbial nitrogen per kg ruminal digestible organic matter for LHA and HHA, respectively (P < 0.05). Supplementation with MS showed higher values of milk yield by 2.4 kg/cow/day (P < 0.001), milk protein content by 0.10 % (P < 0.023) and herbage DMI by 2.2 kg/cow/day, and showed lower values for milk urea compared to GS (P < 0.001). The former results suggest that TS had a greater effect on milk yield, total feed intake and energy intake than increase in herbage allowance; however, increase in HA had greater effects on MP than TS.  相似文献   

17.
The objective was to evaluate the provision of oat silage (Avena sativa) to supplement grazing dairy cows on pastures of perennial ryegrass (Lolium perenne), festulolium (Lolium multiflorum × Festuca pratense) and white clover (Trifolium repens) during the dry season when pasture growth is limited. The experimental design was a 3 × 3 Latin square replicated three times, with nine milking Holstein cows (mean live weight 496.2 ± 33.6 kg and daily milk yield 14.8 ± 2.8 kg cow?1) under on-farm participatory rural research. Experimental periods were 14 d. Simulated grazing samples of pasture herbage were analysed for chemical composition, sward height recorded and net herbage accumulation determined from exclusion cages. Treatments were the inclusion of oat silage at T0 = 0 kg DM cow?1 d?1 of oat silage, T3 = 3 kg DM cow?1 d?1 of oat silage, and T6 = 6 kg DM cow?1 d?1 of oat silage, plus 5.0 kg fresh weight commercial concentrate and 9 h of continuous grazing. Animal variables were milk yield and composition, live weight and body condition score. Feeding costs were calculated. Mean milk yield was 18.9 ± 0.27 kg cow?1 d?1 with no differences in animal variables (p > 0.05), but feeding costs per kilogram milk increased 25% for T3 and 50% for T6. Oat silage supplementation is only viable under difficult grazing conditions.  相似文献   

18.
The objective of this study was to quantify the nutritive characteristics of 6 grain crops and 4 herb forages over 4 seasons, when all species were grown at the same site, under the same climatic and edaphic conditions, and with soil moisture and nutrient availability being non-limiting to growth. The forages grown were maize (Zea mays), sorghum (Sorghum bicolor), millet (Pennisetum americana), wheat (Triticum aestivum), triticale (Triticum × secale), oats (Avena sativa), fodder radish (Raphanu sativa), rape (Brassica rapa), chicory (Cachorium intybus) and plantain (Plantago lanceolata). The in sacco degradation characteristics of organic matter (OM) and crude protein of herbages were measured in the rumen of cannulated sheep in order to calculate the availability of effective rumen degradable protein (ERDP), rumen by pass protein, metabolisable protein (MP) and the synchrony index (Is), which describes the efficiency of utilization of degradable nitrogen (N) and OM for microbial protein synthesis (MPS) in the rumen.In this study, all grain crops except maize had a ERDP/fermentable metabolizable energy (FME) ratio varying from 14 for millet to 23 for wheat, well above the ratio of 11 required for optimum MPS in the rumen of dairy cows. In contrast, maize had the lowest ERDP/FME ratio of 3, indicating that ERDP would be limiting MPS in the rumen. The availability of MP varied from 58 g/kg DM in maize to 153 g/kg DM in wheat and all forage species except maize were be able to meet the MP requirement of high-producing dairy cows (30 L/milk/day) provided they were able to consume 11 to13 kg DM/cow/day of the forage.The availability of MP from herbs varied from 95 g/kg DM in fodder radish to 163 g/kg DM in plantain, which would be sufficient for high-producing cows, however, most dairy cows could not consume sufficient forage to achieve these high levels of production due to very high nitrate content in rape (mean of 11.1 g/kg DM) and fodder radish (mean of 8 g/kg DM).  相似文献   

19.
Data were collected over four consecutive years from four, rotationally grazed, grassland management systems each with 15 spring-calving beef suckler cows and their progeny to 13 months of age. The Systems were high stocking rate (SR), high fertiliser nitrogen (N), 2 silage harvests — HH2; high SR, low N, 2 silage harvests — HL2; low SR, low N, 2 silage harvests — LL2, and low SR, low N, 1 silage harvest — LL1. High and low SR were 0.49 and 0.59 ha cow− 1 unit, respectively, and high and low N amounted to an annual input of 239 and 57 kg ha− 1 on the grazing areas, respectively. Where applicable, the four Systems received 114 and 80 kg of N ha− 1 for the first and second silage harvests, respectively. Equal areas of Systems HH2, HL2 and LL2 were conserved as silage (0.29 and 0.21 ha for first (24 May) and second (4 August) harvests, respectively cow− 1 unit) each year. Silage from System LL1 (0.37 ha cow− 1 unit) was conserved 14 days after the other first harvests. Following the final harvesting for silage within any System these areas of grassland were then grazed. During the winter all animals were housed and cows were offered grass silage and calves were offered silage plus 1 kg of concentrate per head daily. Good cow and calf performance at pasture were obtained at both high SR and high N or low SR and low N. At the high SR, increasing the level of fertiliser N application increased cow liveweight gain at pasture by 24 kg, improved body condition score (BCS) gain at pasture by 0.36 units and prolonged the grazing season by 7 days. Similarly, at the low level of fertiliser N, reducing the SR, increased cow liveweight gain at pasture by 21 kg, improved BCS gain at pasture by 0.23 units and prolonged the grazing season by 7 days. At the low SR all the winter silage requirements could be provided in one as opposed to two harvests thereby reducing the conservation area. However, delayed harvesting of silage resulted in lower silage digestibility and reduced calf performance in winter. The results indicate the specifications for a planned lower N grassland system, particularly where qualification for EU environmental schemes is dependent on moderate stocking densities.  相似文献   

20.
In experiments conducted over a four-year period the effect of pasture type (Setaria sphacelata and a Brachiaria decumbens/Leucaena leucocephala mixture), management system (rotational grazing and cut and carry) and level of concentrate supplement (0, 4 and 6 kg fresh weight/cow per day) on milk production in smallholder dairy units was examined. All units were 1 ha in size and stocked with five Sahiwal X Friesian cows. Milk yields/ha were higher from rotational grazing and the brachiaria/leucaena pasture when compared with the cut and carry system and the setaria pasture respectively. In subsequent experiments smallholder units were based on brachiaria/leucaena and rotational grazing. A supplement of 4 kg fresh weight of concentrate (11 MJ/kg DM and 150 g/kg DM CP) increased milk yield/ha from 7,760 to 13,045 kg while in a third trial milk yield/ha was further increased from 14,148 to 16,760 kg when concentrate level was raised from 4 to 6 kg fresh weight/day. The results indicate that smallholder dairy units in Malaysia could be economically viable and competitive with other agricultural enterprises such as rubber and oil palm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号