共查询到20条相似文献,搜索用时 62 毫秒
1.
基于生理发育时间的日光温室番茄发育模拟模型 总被引:8,自引:3,他引:8
掌握温室番茄生育期是温室番茄专家决策系统中进行生产安排和市场销售的重要内容,本研究将温度对番茄发育速率影响效应的大小用相对热效应(RTE)来衡量,通过研究Beta函数的性质提出基于幂函数的模型来描述RTE与温度之间的关系。每日相对热效应(RTE)决定每日生理发育效应(PDE)的大小,其累积形成每日的生理发育时间。采用生理发育时间(PhysiologicalDevelopmentTime,PDT)作为定量发育进程的尺度,建立了温室番茄发育模拟模型。利用模型对日光温室2年4茬番茄生长发育期资料进行检验的结果表明:模型能较好地预测各个发育期(发芽、苗期、开花座果、结果和采收期)的出现时间和持续时间,各生育期模拟值与观测值的回归估计标准误差(RMSE)分别为1.32d,1.73d,0.35d,1.58d,2.52d,显著优于以有效积温模拟模型的预测精度(其生育期模拟的RMSE分别为2.55d,9.74d,2.06d,9.27d,11.99d)。 相似文献
2.
单株成果数是番茄单株产量的构成因子,为了定量分析不同品种设施番茄单株成果数与环境条件之间的关系,以"美国摩尔一号"(B1,偏早熟)、"超世纪番茄大王"(B2,偏晚熟)和"美国903"(B3,中熟)为材料,于2009年、2010年和2011年开展了品种和施肥、品种和水分田间试验。通过分析不同品种、水分和施肥水平番茄坐果数、果实脱落数、开花数及现蕾数与环境因子的关系,建立了设施番茄单株现蕾数、单株花脱落数、单株果脱落数和单株成果数模型。经独立试验资料检验,设施番茄品种B1、B2和B3平均单株累积现蕾数实测值与模拟值的根均方差(RMSE)、平均绝对误差(Xde)和决定系数(R2)分别为2.452个(n=24)、1.851个和0.976,1.820个(n=24)、1.422个和0.948,1.849个(n=24)、1.464个和0.949。单株花脱落数实测值与模拟值的RMSE、Xde和R2分别为0.712个(n=16)、0.662个和0.786,0.730个(n=17)、0.662个和0.965,1.229个(n=16)、1.091个和0.952。单株果实累积脱落数实测值与模拟值的RMSE、Xde和R2分别为0.391个(n=15)、0.342个和0.849,0.439个(n=15)、0.346个和0.966,0.318个(n=15)、0.288个和0.961。单株成果数模拟值与实测值的RMSE、Xde和R2分别为0.839个(n=27)、0.712个和0.934,实测值与模拟值的吻合程度较好,说明模型可较好地模拟不同品种、水分和施肥水平设施番茄单株成果数。 相似文献
3.
根据番茄生物学特性、发育阶段有效积温恒定的原理和多年的栽培经验,对温室长季节栽培番茄的发育阶段进行划分,其生长发育阶段包括播种期、幼苗期、开花座果期、果实膨大期、果实采收初期、果实采收盛期和果实采收末期。将不同播期各生育阶段的生长度日的平均值确定为建模过程中的参数Ai:自幼苗期至果实采收末期分别为710.5、110.5、152.3、302.9、245.6、2156.7、200.5度日。确定了发育阶段有效积温参数后,建立了温室番茄长季节栽培的发育动态模拟模型,系统的预测番茄发育阶段。模型检验结果表明,温室番茄发育动态模拟模型具有较高的精确性、机理性和实用性。 相似文献
4.
根据番茄生物学特性、发育阶段有效积温恒定的原理和多年的栽培经验,对温室长季节栽培番茄的发育阶段进行划分,其生长发育阶段包括播种期、幼苗期、开花座果期、果实膨大期、果实采收初期、果实采收盛期和果实采收末期.将不同播期各生育阶段的生长度日的平均值确定为建模过程中的参数Ai自幼苗期至果实采收末期分别为710.5、110.5、152.3、302.9、245.6、2156.7、200.5度日.确定了发育阶段有效积温参数后,建立了温室番茄长季节栽培的发育动态模拟模型,系统的预测番茄发育阶段.模型检验结果表明,温室番茄发育动态模拟模型具有较高的精确性、机理性和实用性. 相似文献
5.
为了确定通用性园艺作物发育期和采收期模拟模型的最优模拟路径,该研究获取了9 a 58茬分期播种试验观测数据,分别以黄瓜(‘津优 35’和‘津盛206’)、番茄(‘瑞粉 882’和‘普罗旺斯’)、芹菜 (‘尤文图斯’)、菠菜(‘大叶’)、香芹(‘四季’)、郁金香(‘粉色印象’、‘白日梦’、‘艾斯米’和‘夜皇后’)、茶叶(‘龙井’)为供试材料,依据作物生长发育与关键气象因子(辐射和温度)的关系,基于4类建模方法(温差法、积温法、生理发育时间法和辐热积法)构建了园艺作物发育期和采收期模拟模型,确定了模型关键参数,并以4种方式(平均值、最值均值、中值和逐步回归)集成模拟结果,最终确定模型最优模拟路径。结果表明:1)不同时间尺度发育期和采收期模拟模型的均方根误差(root mean square error,RMSE)为4.85~17.01 d,归一化均方根误差(normalized root mean square error,NRMSE)为10.65%~16.31%;不同作物发育期和采收期模拟模型的RMSE为0.50~17.08 d,NRMSE为4.33%~20.24%,郁金香发育期模拟模型最优,黄瓜采收期模拟模型最优;不同模拟方法发育期和采收期模拟模型的RMSE为0.08~24.37 d,NRMSE为0.18%~54.81%。2)通过比较不同模拟方法的模拟精度,得出逐时优于逐日时间尺度,集成方法优于单一方法模拟,正弦优于线性温度响应模式,叶温优于气温温度形式,温度响应模拟需要考虑下限和上限温度。3)最优模拟路径为先选择逐时尺度、考虑生物学下限和上限温度的正弦温度响应模式和叶温温度形式构建模型,再选择集成法优化发育期(中值集成)和采收期(逐步回归集成)模型。研究结果为指导园艺作物智慧生产管理和高效利用农业资源方面提供理论基础和技术支撑。 相似文献
6.
以番茄器官生长发育的生理生态过程为基础,建立了北方日光温室长季节番茄茎节生长模拟模型,它是建立番茄叶片和果实生长模拟模型的基础。供试番茄品种为“卡鲁索”和“卡特琳娜”。确定了模型中的参数如节点最大出现速率等,并对模型进行了验证试验。结果表明:番茄茎节数模拟值与实测值的变化趋势一致,平均相对误差为0.7%~9%。用散点图法验证模拟值与实测值的相关系数达0.9964,截距为-8.8,每平方米模拟值比实测值平均偏低8.8个茎节。表明模型模拟结果较好。 相似文献
7.
气候变化对河南省夏玉米主栽品种发育期的影响模拟 总被引:2,自引:0,他引:2
为模拟气候变化对夏玉米发育期影响,本文将河南省划分为4个夏玉米主栽区,分区进行主栽品种遗传参数调试验证,确定各区域品种平均遗传参数。将未来气候变化情景(A2和B2)下,2020s、2050s和2080s各时段的温度和降水增量加上基准值,模拟未来气候变化对河南省夏玉米发育期的影响。模型调参验证结果表明:各区域品种遗传参数存在一定差异,豫西地区当前种植品种播种-开花所需积温高于其它地区,而豫北和豫东当前种植品种开花-成熟所需积温高于其它地区;各区开花期调参和验证误差RMSE为2~4d,相对误差NRMSE均小于10%;各区域成熟期调参误差RMSE均小于4d,验证误差RMSE为3~7d,除豫西区外,各区域调参及验证期间的成熟期相对误差NRMSE均小于10%。表明CERES-Maize模型对河南省各区域夏玉米发育期模拟精度均较高。未来气候变化影响模拟结果表明:A2和B2情景下,夏玉米营养生长期平均缩短4.7d和3.1d,全生育期平均缩短12.9d和8.6d。夏玉米生育期缩短日数与各时段增温幅度趋势一致,全省4个区域中豫西区生育期日数缩短最多。 相似文献
8.
浅论对水稻发育期模型的认识 总被引:9,自引:0,他引:9
在分析“水稻钟”模型等3个发育期模型的参数个数及其生物学意义的基础上,通过数学推证,揭示了各参数的关系。结果表明:模型事的感温性系数P、Q并不相互独立,3个模型在描述水稻的感温性方面,可在“水稻钟”模型中求得统一。 相似文献
9.
为了探究加工番茄在滴灌栽培条件下地上部干物质分配动态和产量形成过程,该文通过定量分析加工番茄的生长发育特征,设置不同品种的播期试验,构建了基于分配指数(partitioning index,PI)和收获指数(harvest index,HI)的加工番茄地上部干物质分配与产量预测的模拟模型。利用与建模数据相独立的试验资料对模型进行了初步检验,结果表明,模型对不同播期、品种的加工番茄各生育期(出苗至开花、开花至坐果、坐果至红熟、红熟至拉秧期)干物质量,全生育期总干物质量、地上部茎、叶、果干质量的预测结果与1:1直线间的R2分别为0.9754、0.9936、0.9840、0.9713;0.9856;0.9595、0.9798、0.9671;RMSE和RE分别为0.029 t/hm2、11.43%;0.074 t/hm2、5.09%;0.250 t/hm2、6.83%;0.102 t/hm2、5.71%;0.504 t/hm2,8.06%;0.332 t/hm2,14.62%;0.200 t/hm2,10.84%;0.549 t/hm2,18.30%。模型对加工番茄产量的预测结果与1:1直线间的R2为0.9658,RMSE和RE分别为5.806 t/hm2、8.07%。该模型对于不同播期、品种的加工番茄干物质分配与产量的预测值与模拟值之间符合度较高,表明模型具有较好的预测性和适用性。该研究可为滴灌加工番茄精准栽培提供理论参考。 相似文献
10.
基于作物发育动态理论模型原理及钟模型方法构建甘蔗发育期模拟模型(SDSM,sugarcane development simulation model),模拟新植蔗和多年宿根蔗不同发育期。利用广西甘蔗主产区(宜州、沙塘、来宾、扶绥、贵港)的甘蔗发育期多年观测资料及同期气象数据,结合甘蔗各发育阶段的三基点温度指标,通过试错法确定甘蔗发育期模拟模型(SDSM)参数,模拟新植蔗、宿根蔗各发育期(播种-出苗、出苗-分蘖、分蘖-茎伸长、茎伸长-工艺成熟)。通过模拟值与实测值对比分析,对模拟效果进行评价。结果表明:模型具有较强的机理性,模型中基本发育函数部分反映了品种的基因特性,模型能够有效模拟甘蔗的发育期。新植蔗各发育阶段NRMSE在5.2%~26.31%,播种-出苗阶段模拟值与实测值相差8.1d,出苗-分蘖相差7.4d,分蘖-茎伸长相差4.6d,茎伸长-工艺成熟相差7.4d;宿根蔗各发育阶段NRMSE在6.52%~21.66%,上一年工艺成熟-发株阶段模拟值与实测值相差8.8d,发株-分蘖相差8.7d,分蘖-茎伸长相差7.5d,茎伸长-工艺成熟相差9.9d。说明模拟值与实测值具有较好的一致性与相关性,模型可以实现对甘蔗发育期的预测。 相似文献
11.
《Journal of plant nutrition》2013,36(6):1203-1222
Abstract Relative tillering rate (RTR) increases linearly as leaf nitrogen concentration (NLV) increases in rice (Oryza sativa L.) plants. Leaf area index (LAI) has a negative effect on the emergence and survival of tillers. The objectives of this paper were to quantify the interactive effect of NLV and LAI on tillering in irrigated rice. Field experiments were conducted at Philippine Rice Research Institute (PRRI) and International Rice Research Institute (IRRI), Philippines during the dry seasons of 1995 and 1998. Two indica cultivars, IR72 and IR68284H, were subjected to various nitrogen (N) treatments. Number of tillers (including main stems), leaf area, and tissue N concentration were measured. The NLV explained a large part of variation in number of tillers m?2 among treatments. However, the residual, defined as the difference between observed and estimated number of tillers m?2, was negatively correlated with LAI (P < 0.01). When LAI was considered in addition to NLV, the model explained the variation in number of tillers m?2 much better, and the correlation between the residual and LAI declined and became insignificant (P > 0.05). The critical NLV and critical LAI for tillering to stop were interrelated; higher NLV was needed to prevent tillers from dying when LAI was high, and vice versa. Use of stem or shoot N concentration instead of NLV gave similar results. Results suggest that LAI, in addition to NLV, should be considered in predicting tillers in rice crop. 相似文献
12.
国内外紫花苜蓿生长模型研究进展与展望 总被引:7,自引:2,他引:7
作物生长模拟模型有助于理解和预测作物生长发育、产量形成及其对环境的反应,并可用于资源利用分析,为生产提供决策支持。本文介绍了紫花苜蓿生长模拟模型的国内外研究进展、现状及特点,剖析了新近开发的紫花苜蓿生长模型(APSIM Lucerne)的组成和结构,对紫花苜蓿生长模型研究的重点与前景进行了分析讨论。 相似文献
13.
为了研究昼夜温差对番茄果实膨大-成熟期各阶段果实品质动态变化的影响,并构建昼夜温差对果实品质影响的模拟模型,以番茄品种"金冠5号"为试验材料,在人工气候箱对坐果后的番茄植株进行昼夜温差处理,设置25℃日平均温度下5个昼夜温差(DIF)水平,即-18℃(16℃/34℃,昼温/夜温)、-12℃(19℃/31℃)、0℃(25℃/25℃)、+12℃(31℃/19℃)、+18℃(34℃/16℃),测定各处理下番茄果实品质指标。结果表明:正昼夜温差可提高番茄果实营养成分含量和品质,而负昼夜温差使其降低。正昼夜温差使可溶性糖、糖酸比、可溶性蛋白、Vc含量增加,+12℃DIF处理下各营养品质含量高于+18℃DIF下,而负昼夜温差使其降低,且随负昼夜温差的增大而降低。有机酸含量在正昼夜温差下减少,而在负昼夜温差下增加。番茄红素含量在+12℃DIF下上升,而在+18℃DIF和负昼夜温差下降低。不同昼夜温差处理下,可溶性糖、可溶性蛋白含量均与辐热积呈Logistic模型关系,通过拟合昼夜温差值与Logistic模型参数的数量关系,得到昼夜温差对可溶性糖、可溶性蛋白动态变化影响的模拟模型。有机酸、Vc含量均与辐热积呈二次多项式关系,通过拟合昼夜温差与二次多项式模型参数的数量关系,得到昼夜温差对有机酸、Vc动态变化影响的模拟模型。检验结果表明,模型模拟效果良好。 相似文献
14.
15.
16.
为明确辐照对樱桃番茄杀菌效果及其品质特性的影响,以樱桃番茄为材料,分析了樱桃番茄中大肠杆菌、沙门氏菌和李斯特氏菌3种致病菌D_(10)值,并对辐照样品在室温下贮藏0、2、4、6、8、10 d后的色泽和可溶性固形物含量进行了分析。结果表明,樱桃番茄中接种的大肠杆菌、沙门氏菌和李斯特氏菌的D_(10)值分别为0.088、0.243和0.264 kGy;辐照剂量低于2.0 kGy时对樱桃番茄在室温条件下色泽L*值、a*值、b*值及可溶性固形物含量无显著影响(P0.05)。因此,2.0 kGy可以作为樱桃番茄辐照的适宜剂量。本研究结果为降低樱桃番茄的致病微生物含量及辐照技术在保障生鲜果蔬受致病菌污染的应用提供了一定的技术支持。 相似文献
17.
18.
水稻叶片的衰老是制约杂交稻产量提高的主要因素之一,有数据表明水稻籽粒灌浆所需营养物质的60%-80%来自叶片的光合作用,实践证明叶片每推迟1天衰老,产量可提高产1%左右。因此,对叶片衰老的形态、生理生化及其相关分子机理等进行研究具有重要的现实意义。近年来水稻叶片衰老的相关研究表明,叶片的衰老是一个受众多因素影响的复杂过程,在这个过程中叶片发生了巨大的形态与生理生化变化,而这些变化均离不开基因的调控作用。大量实验结果表明:在衰老过程中,叶片细胞有选择地启动或增强某些基因(叶片衰老相关基因)的表达,而关闭或减弱另一些基因(衰老下调基因)的表达,由此来调控叶片衰老的进程。目前研究者已在研究衰老突变体等相关的材料中发现了许多与水稻叶片衰老有关的基因。本文重点概述了近年来水稻叶片衰老相关基因的研究状况,并对未来研究方向等问题做了思考与探讨,以期能为开展进一步的研究工作提供参考。 相似文献
19.
小麦叶形空间分布的模拟模型及推理系统 总被引:10,自引:3,他引:10
对不同类型冬小麦品种叶形空间分布参数进行了定量描述,建立了叶片形状、叶面积指数随生长期的变化、叶面积随高度的分布及叶倾角分布(LAD)等叶形空间分布的模拟模型及推理系统,提出了叶片形状因子和长势模拟模型,单叶空间最高点、高度层间隔内累积投影叶面积及各组分的空间取向与叶倾角分布解析模型系统及其主要设计算法。上述模型为具有普适意义的冬小麦冠层结构机理模型,其推理系统可以精确计算任意高度层次的投影叶面积分布特性,是评价作物株形结构优劣判断群体结构合理与否的有力工具,同时对于解析和利用多角度遥感数据监测作物长势等也具有重要参考价值 相似文献
20.
不同施氮水平下温室番茄叶片反射光谱特征分析 总被引:1,自引:0,他引:1
利用便携式光谱辐射仪测定了温室番茄叶片的光谱反射率,研究了不同施氮水平下特定光谱指数与叶片氮含量、光合速率及产量的关系。结果表明,温室番茄叶片的光谱反射率在可见光波段随供氮水平的升高而降低,在近红外波段随供氮水平的升高而增加。随施氮水平的提高,绿峰的蓝移和红边的红移现象明显,而红谷反射率与光合速率之间的关系可用二次方程拟合,相关系数达0.805。番茄叶片氮含量的敏感光谱波段为580~695 nm,740~900 nm,由695 nm、770 nm两个波段构建的高光谱指数(RVI、NDVI)与叶片氮含量的相关性显著。而基于原始光谱数据对番茄产量的估测也可在温室中得到很好的运用,其中光谱指数RV(I710,680)、VARI700和产量的拟合方程最优。 相似文献