首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot delineate from which soil volume a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare δ18O and Br? values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods of centrifugation and azeotropic distillation. Also, the study was concerned with determining what portion of soil pore water is sampled by each method and explaining differences in concentrations of the extracted water from each method to allow a determination of the accuracy and viability of the three methods of extraction. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. Isotopically (18Oδ) labeled water and bromide concentrations within water samples taken by suction lysimeters was compared with samples obtained by methods of centrifugation and azeotropic distillation. The 18Oδ water was analyzed by mass spectrometry while bromide concentration, applied in the form of KBr was measured using standard IC procedures. Water collected by centrifugation and azeotropic distillation data were about 0.25‰ more negative than that collected by suction lysimeter values from a sandy soil and about 2–7‰ more negative from a well structured soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also suggest that each extraction method samples a separate component of soil-pore water. Centrifugation can be used with success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data on sorption desorption, and various types of kinetic studies may be needed.  相似文献   

2.
Seasonal variability of Cu, Pb, and Zn concentrations in litter leachates and soil solutions was examined in an afforested zone surrounding a copper smelter in SW Poland. Litter leachates (with zero‐tension lysimeters) and soil solutions (with MacroRhizon suction‐cup samplers, installed at a depth of 25–30 cm) were collected monthly at three sites differing in contamination levels in the years 2009 and 2010 (total Cu: 2380, 439, and 200 mg kg–1, respectively). Concentrations of Cu in the litter leachate were correlated with dissolved organic C (DOC), whereas Zn and Pb were mainly related to leachate pH. Metal concentrations in the soil solution were weakly influenced by their total content in soils and the monthly fluctuations reached 300, 600, and 700% for Cu, Pb, and Zn, respectively. Metal concentrations in soil solutions (Cu 110–460 μg L–1; Zn 20–1190 μg L–1; Pb 0.5–36 μg L–1) were correlated with their contents in the litter leachates. Chemical speciation, using Visual Minteq 3.0, proved organically‐complexed forms even though the correlations between metal concentrations and soil solution pH and DOC were statistically insignificant. The flux of organically‐complexed metals from contaminated forest floors is believed to be a direct and crucial factor affecting the actual heavy metal concentrations and their forms in the soil solutions of the upper mineral soil horizons.  相似文献   

3.
A field study was conducted to determine the rapidity and extent of xylene movement after simulated spills on undisturbed soils of diverse texture and structure. To monitor xylene movement, porous ceramic suction cups and newly developed pan samplers were installed at a depth of 61 cm at two locations in each of three soils. A volume equivalent to a depth of 5 cm of dye labeled xylene was spilled on one plot of each soil contained in large lysimeters. Split applications of 1.25 cm depth equivalent were also made 21 days apart on one lysimeter of each of the soils. Significant quantities of xylene were detected at the 61 cm depth approximately 1 day, 1 hr, and 0.5 hr after the 5 cm application in the loamy sand, silt loam, and clay, respectively. Xylene movement after the first 1.25 cm of the split xylene application was almost as rapid as after the 5 cm application. However, with the second 1.25 cm application of xylene, free xylene was collected in the leachate at the 61 cm depth for all three soils. Dye patterns observed upon excavation of the soils indicated that the xylene moved as a relatively uniform front in the sand but moved through isolated macropores between structural units in the silt loam and clay soils. The free drainage pan samplers were more effective than the porous ceramic suction samplers in monitoring the movement of xylene in all three soils at high soil moisture contents. The porous cup samplers were ineffective in the well structured clay soil, possibly due to being bypassed by the xylene moving through isolated macropores. Xylene concentrations from the porous cup samplers were often lower than those from the pan samplers. The lower concentrations are thought to be partially due to losses of xylene by volatilization when a vacuum was applied to collect the samples. Author for all correspondence.  相似文献   

4.
Dissolved organic nitrogen (DON) plays an important ecological role in forest ecosystems, and its concentration is related to that of dissolved organic carbon (DOC). We investigated DON concentrations and ratios of DOC to DON in throughfall and soil waters in 16 Norway spruce and two Scots pine forest stands sampled at weekly intervals between 1996 and 2006. The stands are all included in the ICP Forests Level II monitoring program and are located throughout Norway. DON concentrations were significantly and positively related to DOC concentrations in throughfall (r 2?=?0.72, p?<?0.0001) and soil water at 5, 15, and 40 cm (r 2?=?0.86, 0.32, and 0.84 and p?<?0.0001, 0.04, and <0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, which is lower than values in soil water, which ranged from 24.5 to 81.3, gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5-cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity.  相似文献   

5.
Investigating preferential flow in a large intact soil block under pasture   总被引:1,自引:0,他引:1  
Abstract. A large soil block was constructed to determine the importance of preferential flow routes compared with matric flow pathways at a pasture site in mid-Devon. The sandy loam soil was well structured and uniform. The soil block measured 5 m×3 m×1 m and was instrumented with an array of 54 tensiometers, TDR wave guides and suction samplers connected to an in situ chloride analysis system. Four steady state irrigation experiments were conducted with a range of rainfall intensities. During each experiment chloride and nitrate tracers were applied and the patterns of movement were observed. Although the application of tracer was uniform and the soil was relatively homogeneous, there was large variability across the block in terms of time taken to reach the peak concentration (TPC) and the peak concentration itself. About 44 samplers operated at the greatest intensities (10–2 mm h−1) and only 35 at the smallest (1 mm h−1). No relationship was found between TPC and depth. The fastest TPC and largest concentrations were associated with the greatest rainfall intensities. Relative importance of the individual water pathways was a function of soil heterogeneity: parts of the soil block were highly active with several pathways having short TPCs and conductivities in excess of 4 m day−1 whereas other areas had longer TPCs and conductivities of 1–2 m day−1. The pattern was also dynamic, with conductivities of the pathways changing through time, though most of the faster pathways maintained their greater conductivities for more than one year.  相似文献   

6.
Microbial decomposition of extracted and leached dissolved organic carbon (DOC) and nitrogen (DON) was demonstrated from three pasture soils in laboratory incubation studies. DOC concentration in water extracts ranged between 29 and 148 mg C L?1 and DON concentration ranged between 2 and 63 mg N L?1. Between 17 and 61 % of the DOC in the water extracts were respired as CO2 by microbes by day 36. DON concentrations in the extracts declined more rapidly than DOC. Within the first 21 days of incubation, the concentration of DON was near zero without any significant change in the concentration of NO3 ? or NH4 +, indicating that microbes had utilized the organic pool of N preferentially. Decomposition of leached DOC (ranged between 7 and 66 mg C L?1) and DON (ranged between 6 and 11 mg N L?1) collected from large lysimeters (with perennial pasture; 50 cm diameter?×?80 cm deep) followed a similar pattern to that observed with soil extracts. Approximately 28 to 61 % of the DOC in leachates were respired as CO2 by day 49. The concentration of DON in the leachates declined to below 1 mg N L?1 within 7–14 days of the incubation, consistent with the observations made with extractable DON. Our results clearly show that DOC and DON components of the dissolved organic matter in pasture soils, whether extracted or leached, are highly decomposable and bioavailable and will influence local ecosystem functions and nutrient balances in grazed pasture systems and receiving water bodies.  相似文献   

7.
Soil solutions were collected monthly by tension and zero-tension lysimeters in a low-elevation red spruce stand in east-central Maine from May 1987 through December 1992. Soil solutions collected by Oa tension lysimeters had higher concentrations of most constituents than the Oa zero-tension lysimeters. In Oa horizon soil solutions growing season concentrations for SO4, Ca, and Mg averaged 57, 43, and 30 μmol L?1 in tension lysimeters, and 43, 28, and 19 μmol L?1 in zero-tension lysimeters, respectively. Because tension lysimeters remove water held by the soil at tensions up to 10 kPa, solutions are assumed to have more time to react with the soil compared to freely draining solutions collected by zero-tension lysimeters. Solutions collected in the Bs horizon by both types of collectors were similar which was attributed to the frequency of time periods when the water table was above the Bs lysimeters. Concentrations of SO4 and NO3 at this site were lower than concentrations reported for most other eastern U.S. spruce-fir sites, but base cation concentrations fell in the same range. Aluminum concentrations in this study were also lower than reported for other sites in the eastern U.S. and Ca/Al ratios did not suggest inhibition of Ca uptake by roots. Concentrations of SO4, Ca, K, and Cl decreased significantly in both the Oa and Bs horizons over the 56-month sampling period, which could reflect decreasing deposition rates for sulfur and base cations, climatic influences, or natural variation. A longer record of measured fluxes will be needed to adequately define temporal trends in solution chemistry and their causes.  相似文献   

8.
The value of soil water samples used in ecological studies is highly dependent on the quality of the samplers. Tension soil-water samplers are widely used to extract soil solutions, and the samplers are often tested in the laboratory under conditions that differ significantly from field conditions. This study describes a field procedure useful for comparison of two different tension soil-water samplers. Ceramic and PTFE cups are compared. There were no differences in the concentrations sampled by the two different types of sampler for Na+, K+, Ca2+, Al3+, NH4+, H+ and NPOC (non-purgeable organic carbon). Change in the applied vacuum in the range 0 to –0.4 × 105 Pa did not change the concentrations of chemical species in the collected soil water. The ceramic cups collected significantly larger amounts of water due to differences in the hydrostatic characteristics of the two samplers. It was found that the ceramic samplers collected the highest concentrations of Mg2+ in some situations. The results are evaluated and discussed in relation to the possible sources of errors and the temporal and spatial variabilities.  相似文献   

9.
Zero-tension lysimeters are widely applied to study the fate of chemicals in the subsurface environment. However, conditions in lysimeters differ from the field situation, because local saturation is required at the lower boundary to collect leachate. The objective was to characterize the influence of the lower boundary on the flow and transport behaviour of bromide observed in six 1.2-m-long lysimeters and in the field by 30 suction plates installed at 1.2-m depth, which were operated with a time-variable suction equal to the ambient soil water potential. A bromide pulse was applied at the bare surface of a silty soil in autumn 1997 and monitored for 2.5 years. The mean leachate flux was 0.98 mm day−1 for the lysimeters versus 0.66 mm day−1 for the suction plates. The lysimeters had a slightly slower effective mean pore-water velocity, expressed as transport distance per unit of leaching depth, and exhibited more solute spreading than the suction plates. Numerical simulations revealed that the amount of water collected with the suction plates was sensitive to the hydraulic conductivity of the plates. The spatial variability in hydraulic properties in the model explained the observed variability in cumulative leachate, at least qualitatively. The arrival time and spreading of the breakthrough curves (BTCs) were well described by the simulations in the lysimeters, but were underestimated in the suction plates. Preferential flow through macropores, which is not an effective carrier for bromide, might be the reason for this discrepancy. Molecular diffusion contributed significantly to solute spreading and enhanced lateral mixing. Both the experiments and the simulations revealed that the dispersivity derived from BTCs is significantly influenced by the observation method and experimental conditions.  相似文献   

10.

Purpose

Soils that develop on the dumps in historical arsenic mining sites contain high concentrations of As thus constituting a serious environmental risk. This study was aimed to examine the changes in arsenic solubility in mine soils as induced by organic matter introduced with forest litter.

Materials and methods

Four large samples of initially developed soils were collected from the dumps remaining in former mining sites and were incubated for 90 days at various moistures: 80% of maximum water holding capacity and 100% (flooded conditions), with and without addition of beech forest litter (BL), 50 g/kg. Soils contained up to 5.0% As. Soil pore water was collected periodically with MacroRhizon suction samplers and examined on As, Mn, and Fe concentrations, pH, Eh, and dissolved organic carbon (DOC). The properties of dissolved organic matter were characterized by UV-VIS spectroscopic parameters A4/A6 and SUVA254.

Results and discussion

Application of BL resulted in an intensive release of As from soils, particularly at 100% moisture. As concentrations in soil pore water increased strongly during the first 2 or 4 weeks of incubation and then started to decrease in all cases, except for one flooded soil. As was released particularly intensively from carbonate-containing soils. The mechanisms of As mobilization, including reductive dissolution of Mn and Fe oxides and the competition with DOC for sorption sites on the oxides, were discussed as related to soil properties. Pore water concentrations of DOC were increasing at the beginning of incubation and started to decrease after two or four weeks. Spectroscopic parameters of dissolved organic matter in ZS soils indicated increasing aromaticity and progress of humification.

Conclusions

Forest litter introduced to mine dump soils causes a mobilization of As into soil pore water. This effect, particularly strong in carbonate-rich soils, is apparently related to high concentrations of DOC and usually declines with time, which may be explained by the progress in humification. The relationships between DOC properties and As speciation in soil pore water should be dissected for better interpretation of experimental results.
  相似文献   

11.
The composition of soil solutions obtained from the field varies with the method of extraction. Variations in sampling methods and the difficulties in extracting representative samples from soils in space and time, can explain divergent results. In this study we compared soil solutions from a forest soil in northern Sweden obtained by a centrifuge drainage technique and by zero-tension monolith lysimeters. Zero-tension lysimeters were destructively sampled, and centrifuge solutions from this soil were compared with that from soil outside. In our study we found three major differences in the solute composition between the centrifugate and the lysimeter leachate: (i) larger concentrations of most solutes in the mor layer centrifugate than in the mor layer leachate, (ii) accumulation of nitrate in the lysimeters, and (iii) larger concentrations of base cations in the zero-tension lysimeters below 0.3 m depth. Water contents within the lysimeters were up to 3.5 times greater than under natural conditions and the water yields from the lysimeters indicate that water residence time ranged from < 1 to >5 years. This study shows that differences in results from the two methods are due to inherent differences in the methods themselves and not just to the collection of different soil waters. The hydrological anomaly and disturbance induced by the zero-tension lysimeters affects the solute chemistry and thus the applicability of the results to field conditions.  相似文献   

12.
To determine boundary effects on leaching, we investigated (1) how filter materials affect the concentrations of dissolved organic carbon (DOC) and nitrate (NO3‐N) in soil percolates and (2) whether ion exchange resins and suction plates are equally suited to capture NO3‐N. DOC leaching was higher with PE suction plates and plate material did not affect NO3‐N leachate concentrations. Cumulative NO3‐N leaching was similar for glass suction plates and ion exchange resins.  相似文献   

13.
Peat drainage, a common land‐use practice in Europe, has been associated with habitat degradation and increased particulate and dissolved carbon release. In the UK, peatland drain blockage has been encouraged in recent years as a management practice to preserve peatland habitats and to reduce fluvial carbon loss and municipal water discoloration. Drain blockage has, however, been found to increase drain‐water dissolved organic carbon (DOC) concentrations and coloration in the short term. In order to investigate the contribution of changes in extracellular phenol oxidase activity to the increase in water coloration following peatland drain blockage, cores collected from a riparian peatland in North Wales were incubated under impeded drainage conditions. Impeded drainage resulted in the stimulation of peat extracellular phenol oxidase activity and heightened soluble phenolic concentrations, suggesting that changes in extracellular phenol oxidase activity may be a key driver of increases in DOC and water coloration following peatland drain blockage. An increase in peat pH with impeded drainage was also observed that may have contributed to the heightened soluble phenolic concentrations – directly (through effects on solubility) and/or indirectly as a driver of the elevated extracellular phenol oxidase activity.  相似文献   

14.
Compositional differences between soil solutions obtained by different methods have frequently been reported; variations in the soi1: solution ratio may explain these results. In this study we compared the amount and composition of phosphorus (P) in soil leachates and soil solutions from a temperate grassland soil in northeast Scotland and determined the influence of soi1:solution ratio on P fractions in soil water extracts. Leachates were collected from intact soil cores over 6 months, the cores were then destructively sampled, and soil solutions obtained by centrifuging. Molybdate reactive P (MRP) represented 71% of the total dissolved P (TDP) in soil leachates but only 54% in soil solutions. The MRP component in soil water extracts increased from 71% to 92% as the soi1:solution ratio increased from 1:15 to 1:15·4, while the dissolved organic P (DOP) component decreased from 26% to 6%. As the soil:solution ratio increased the amount of MRP extracted increased; by contrast the amount of DOP and dissolved condensed P (DCP) extracted remained constant. While the MRP component is regulated by soil sorption processes, the supply and amount of DOP and DCP is probably related to biological activity. Dissolved organic carbon (DOC) extracted at wide soi1:solution ratios contained a smaller proportion of P than that extracted at narrower ratios. The results indicate differences in the behaviour of P fractions in the soil at various soi1:solution ratios and that these are reflected in the P composition of soil solution and leachate.  相似文献   

15.
The biodegradability of dissolved organic carbon (DOC) in different fractions from the forest floor was studied. Soil leachate (SL, the soil solution in macropores which is freely drained from forest floor after rainfall), the soil matrix solution (SMS, the soil solution in meso-/micropores of the soil matrix), and soil water extracts (SWE) from two different beech forest floors were compared. Zero-tension and tension lysimeters were used to collect SL and SMS, respectively. Loss of DOC (during 21 days) and respiration of CO2-C (during 7 days) were used as conventional measures of the availability of DOC. Bacterial production, measured using the leucine incorporation technique, and bacterial growth efficiency were also estimated. All methods were used to study differences in biodegradability between plots with and without ground flora (Deschampsia flexuosa or Anemone nemorosa) and different type of forest floor (with an organic (O) horizon or a mull (A) horizon). There were no differences in bioavailability of DOC from soil solutions extracted from plots with and without ground flora. The bioavailability of DOC in the different collected soil solutions varied, however. DOC in SWE was the most available, with a mean of 39% of DOC-loss in 21 days, and 18% of DOC being respired in 7 days. DOC in soil matrix solution was the least available of the soil solutions (7% respired), significantly less than DOC in soil leachate (11% respired). The methods measuring biodegradation of DOC, DOC-loss and CO2-C respiration gave similar results and were comparable to bacterial production and bacterial growth efficiency, with the exception of SWE from the O-horizon at the D. flexuosa site, which had low bacterial production and bacterial growth efficiency, indicating a limitation of the bacterial growth. This study is one of the first to use bacterial production and bacterial growth efficiency for measuring bioavailability in terrestrial environments, giving an extra dimension for the process of biodegradation of DOC.  相似文献   

16.
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg?=?44?±?15 ng L?1, DOC?=?63.0?±?31.3 mg L?1, pH?=?4.05?±?0.53) than at the northern site (Hg?=?22?±?6 ng L?1, DOC?=?41.8?±?12.1 mg L?1, pH?=?4.28?±?0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34?±?0.06 μg g?1 dw and 0.76?±?0.14 μg g?1 C, respectively) than at the northern site (0.31?±?0.05 μg g?1 dw and 0.70?±?0.12 μg g?1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.  相似文献   

17.
Variables needed to characterize solute transport in soils are soil water pressure (SWP) and solute concentration, which are typically obtained from tensiometers and suction solution samplers, respectively. In this paper we describe a combined tension–solution sampling probe that measures SWP, and allows extraction of soil solution during or between SWP measurements. A separate porous ceramic cup and ring to be used for the tensiometer and suction solution sampler were built into a single unit. Laboratory soil column experiments were carried out to evaluate the performance of the combined tension–solution probe, and the data obtained were compared with those from using separate tensiometer and suction solution samplers. Differences in tensiometric measurements were attributed to differences in size between the tensiometers. An apparent increase in pore water solution concentration as soil water potential is decreased could be explained by anion exclusion.  相似文献   

18.
Chronic N deposition has been hypothesized to affect DOC production in forest soils due to the carbon demand exerted by microbial immobilization of inorganic N. We tested this hypothesis in field experiments at the Harvard Forest, Petersham, Massachusetts, USA. During four years of sampling soil solution collected beneath the forest floor in zero-tension lysimeters, we observed little change in DOC concentrations (10-30% increase, not statistically significant) associated with elevated N inputs, but did observe significant increases in DON concentrations. Both DOC and DON varied seasonally with highest concentrations in summer and autumn. Mean DON concentrations increased 200-300 % with the highest rate of inorganic N fertilization, and concentrations of DON were highest in samples with high inorganic N concentrations. We conclude that the organic chemistry of soil solution undergoes qualitative changes as a result of long-term N amendment at this site, with small changes in DOC, large increases in DON, and a decline in the C:N ratio of dissolved organic matter.  相似文献   

19.
Comparisons were made between 1988 and 1991 to evaluate three methods of estimating the leaching of mineral nitrogen (N) from unstructured freely draining sandy loam and loamy sand soils. The studies compared the drainage patterns and quantities of N (almost exclusively nitrate) leached from monolith lysimeters with those estimated from ceramic suction cups and soil core extracts. The latter two methods gave direct measurements of the mineral N concentrations in drainage, but required an estimate of the drainage volume calculated from meteorological observations and evapotranspiration equations to give total N leached. A bromide tracer was also used to confirm conclusions from nitrate leaching studies. There was a delay in the onset of drainage from free draining lysimeters because they lack the subsoil matric potential of field soils. However, total annual drainage measured by lysimeters or calculated from meteorological observations was similar, providing that return to field capacity was correctly identified in the field soil. During the first year there were discrepancies between methods which were attributed to soil disturbance during lysimeter and/or ceramic cup installation. In the second and third years of the experiment, estimates of N leaching losses using the lysimeters and ceramic cups were in good agreement. Nitrate concentrations in soil solution at a depth of 130 cm measured from soil core extracts were smaller than found by the other methods during the second year and the peak concentrations were significantly different (P<0.05). However, total overwinter N leached was not significantly different. Thus, while lysimeters and cups can be used to quantify leaching losses on unstructured, free draining soils if used correctly, the use of soil core extracts is questionable.  相似文献   

20.
Comparison is made between the chemical composition of acid soil solutions percolated through new, acid-washed ceramic P 80 suction cups, and old, over 3 years field-equilibrated suction cups with respect to quantitative and qualitative changes of dissolved organic carbon (DOC). While new suction cups sorb DOC in significant amounts with hydrophobic constituents preferred, field-equilibrated suction cups alter DOC neither in concentration nor in composition. But at changes of DOC concentrations a percolation volume of 300 ml is necessary for reaching equilibrium. It is, therefore, concluded that field-equilibrated ceramic P 80 suction cups can be used for collecting DOC from mineral B and C horizons of acid forest soils, where DOC concentrations remain constant. In contrast, the suction cups investigated are unsuitable for collecting A horizon solutions, which show greater variations in DOC concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号