首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A 7-year 6-month-old, castrated male Shiba dog presented with a 1-month history of lethargy, anorexia, vomiting, and frequent watery diarrhea. Weight loss, hypoalbuminemia, anemia, and leukocytosis were detected at the first visit. The dog was diagnosed with non-responsive enteropathy (NRE) based on clinical and histopathological examinations. Since the dog did not respond to the immunosuppressive drugs, fecal microbiota transplantation (FMT) was performed during the treatment with chlorambucil. A single endoscopic FMT into the cecum and colon drastically recovered clinical signs and clinicopathological abnormalities and corrected dysbiosis in the dog. No recurrence or adverse events were observed. The present case report suggests that FMT, possibly together with chlorambucil, might be a treatment option for NRE in Shiba dogs that have poorer prognosis compared with other dog breeds.  相似文献   

5.
Although the biliary system is generally aseptic, gallbladder microbiota has been reported in humans and some animals apart from dogs. We screened and analyzed the bacterial deoxyribonucleic acid in canine gallbladders using bile sampled from 7 healthy dogs and 52 dogs with liver- or gallbladder-associated disease. PCR screening detected bacteria in 17.3% of diseased dogs (9/52) and none in healthy dogs. Microbiota analysis of PCR-positive samples showed that the microbial diversity differed between liver- and gallbladder-associated disease groups. Thus, a specific bacterial community appears to occur at a certain frequency in the bile of diseased dogs.  相似文献   

6.
Trehalose, a nonreducing disaccharide consisting of d-glucose with α,α-1,1 linkage, was evaluated as a functional material to improve the gut environment in preweaned calves. In experiment 1, 173 calves were divided into two groups; the trehalose group was fed trehalose at 30 g/animal/d with milk replacer during the suckling period, and the control group was fed nonsupplemented milk replacer. Medication frequency was lower in the trehalose group (P < 0.05). In experiment 2, calves (n = 20) were divided into two groups (control group [n = 10] and trehalose group [n = 10]) based on their body weight and reared under the same feeding regimens as in experiment 1. Fresh feces were collected from individual animals at the beginning of the trial (average age 11 d), 3 wk after trehalose feeding (experimental day 22), and 1 d before weaning, and the fecal score was recorded daily. Fecal samples were analyzed for fermentation parameters and microbiota. The fecal score was significantly lower in the trehalose group than in the control group in the early stage (at an age of 14 to 18 d; P < 0.05) of the suckling period. Calves fed trehalose tended to have a higher proportion of fecal butyrate on day 22 than calves in the control group (P = 0.08). Population sizes of Clostridium spp. were significantly lower (P = 0.036), whereas those of Dialister spp. and Eubacterium spp. tended to be higher in the feces of calves in the trehalose group on day 22 (P = 0.060 and P = 0.083). These observations indicate that trehalose feeding modulated the gut environment and partially contributed to the reduction in medication frequency observed in experiment 1.  相似文献   

7.
Methane production from rumen methanogenesis contributes approximately 71% of greenhouse gas emissions from the agricultural sector. This study has performed genomic predictions for methane production from 99 sheep across 3 yr using a residual methane phenotype that is log methane yield corrected for live weight, rumen volume, and feed intake. Using genomic relationships, the prediction accuracies (as determined by the correlation between predicted and observed residual methane production) ranged from 0.058 to 0.220 depending on the time point being predicted. The best linear unbiased prediction algorithm was then applied to relationships between animals that were built on the rumen metabolome and microbiome. Prediction accuracies for the metabolome-based relationships for the two available time points were 0.254 and 0.132; the prediction accuracy for the first microbiome time point was 0.142. The second microbiome time point could not successfully predict residual methane production. When the metabolomic relationships were added to the genomic relationships, the accuracy of predictions increased to 0.274 (from 0.201 when only the genomic relationship was used) and 0.158 (from 0.081 when only the genomic relationship was used) for the two time points, respectively. When the microbiome relationships from the first time point were added to the genomic relationships, the maximum prediction accuracy increased to 0.247 (from 0.216 when only the genomic relationship was used), which was achieved by giving the genomic relationships 10 times more weighting than the microbiome relationships. These accuracies were higher than the genomic, metabolomic, and microbiome relationship matrixes achieved alone when identical sets of animals were used.  相似文献   

8.
The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1−2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces.  相似文献   

9.
Serum bile acid (SBA) reference intervals were established by use of a radioimmunoassay method for fasting dogs to be 0.2 to 4.3 micro mol/L (n = 60) and for 2 hour postprandial samples to be 0.6 to 24.2 micro mol/L (n = 37). The SBA reference intervals estimated using an enzymatic method were 0 to 8.6 micro mol/L for fasting (n = 26) and 0 to 29.8 micro mol/L for 2 hour postprandial samples (n = 36). The correlation between the two methods including samples from healthy dogs and clinical cases is good (n = 128, r = 0.82, p < 0.0001). The radioimmunoassay method is linear to 50 micro mol/L and the enzymatic method is linear to 100 micro mol/L, thus both methods require serum dilutions to be made in many cases of primary liver disease. The enzymatic method is less expensive and more convenient for use in a clinical laboratory but requires a greater sample volume (400 micro I) than the RIA method (50 micro I). Both methods have adequate precision and accuracy to be useful as diagnostic tests of liver function in dogs.  相似文献   

10.
11.
Six dogs were fed each of nine diets to evaluate the effects of diet on fecal occult blood test results. The diets represented a range of different type (i.e. canned, dry or semi-moist), protein and vegetable constituents, and fiber contents. Each diet was fed twice daily for five consecutive days; fecal samples were collected twice daily on days 4 and 5. An o-tolidine test kit and a guaiac paper test kit for fecal occult blood were used. Two hundred and sixteen fecal samples were analyzed (24 samples/diet). When using the guaiac test the following positive results were obtained from fecal samples from dogs consuming a canned meat- and vegetable-based diet (24/24 samples); a canned meat-based diet (24/24 samples); a dry corn and poultry-based diet (9/24 samples); a dry corn, wheat, and meat meal diet (4/24 samples), a canned poultry-based diet (1/24 sample) and a semi-moist soybean meal-based diet (2/24 samples). A total of 64 samples were positive using the guaiac test. Using the o-tolidine test, no samples were positive. The difference between the number of positive results with each test kit was highly significant (p < 0.001). Results indicate that 1) diet affects the specificity of guaiac test fecal occult blood results in the dog and 2) positive o-tolidine test results were not caused by diets fed in the study.  相似文献   

12.
13.
Fecal microbiota in seven different monogastric animal species, elephant, horse, human, marmoset, mouse, pig and, rat were compared using the same analytical protocol of 16S rRNA metagenome. Fecal microbiota in herbivores showed higher alpha diversity than omnivores except for pigs. Additionally, principal coordinate analysis based on weighted UniFrac distance demonstrated that herbivores and pigs clustered together, whereas other animal species were separately aggregated. In view of butyrate‐ and lactate‐producing bacteria, predominant genera were different depending on animal species. For example, the abundance of Faecalibacterium, a known butyrate producer, was 8.02% ± 3.22% in human while it was less than 1% in other animal species. Additionally, Bifidobacterium was a predominant lactate producer in human and marmoset, while it was rarely detected in other omnivores. The abundance of lactate‐producing bacteria in herbivores was notably lower than omnivores. On the other hand, herbivores as well as pig possess Fibrobacter, a cellulolytic bacterium. This study demonstrated that fecal microbiota in herbivorous animals is similar, sharing some common features such as higher alpha diversity and higher abundance of cellulolytic bacterium. On the other hand, omnivorous animals seem to possess unique fecal microbiota. It is of interest that pigs, although omnivore, have fecal microbiota showing some common features with herbivores.  相似文献   

14.
15.
This study was conducted to evaluate effects of beet pulp supplementation on growth performance, fecal moisture, serum hormones and litter performance in lactating sows. Ninety primiparous sows (Landrace × Yorkshire) were randomly allotted to one of three dietary treatments in a 21‐day trial starting 3 days before parturition. The three dietary treatments were supplemented with 0, 10 and 20% beet pulp, respectively. Backfat loss and fecal moisture content were increased (P < 0.05), where cortisol and norepinephrine levels were decreased (P < 0.05) in sows fed beet pulp supplementation diets compared with control diet, but there was no difference between 10% and 20% beet pulp supplementation treatments. No effect was observed on bodyweight, average daily intake, weaning to estrus interval, epinephrine level in sows and litter weight, litter size, survivability in piglets among dietary treatments. Taken together, beet pulp supplementation has no significant effect of growth performance of lactating sows and piglets with decreased cortisol and norepinephrine levels in lactating sows, but it can increase fecal moisture content which is beneficial for sow feces excretion.  相似文献   

16.
Polyphenols are a class of non-essential phytonutrients, which are abundant in fruits and vegetables. Dietary polyphenols or foods rich in polyphenols are widely recommended for metabolic health. Indeed, polyphenols (i.e., catechins, resveratrol, and curcumin) are increasingly recognized as a regulator of lipid metabolism in host. The mechanisms, at least in part, may be highly associated with gut microbiome. This review mainly discussed the beneficial effects of dietary polyphenols on lipid metabolism. The potential mechanisms of gut microbiome are focused on the effect of dietary polyphenols on gut microbiota compositions and how gut microbiota affect polyphenol metabolism. Together, dietary polyphenols may be a useful nutritional strategy for manipulation of lipid metabolism or obesity care.  相似文献   

17.
18.
19.
《动物营养(英文)》2021,7(4):1189-1204
This study investigated the effects of inulin on rumen fermentation parameters, ruminal microbiome and metabolites, as well as lactation performance and serum indexes in dairy cows. Sixteen Holstein dairy cows with similar body conditions were randomly divided into 2 groups (n = 8 per group), with inulin addition at 0 and 200 g/d per cow. The experiment lasted for 6 weeks, including a 1-week adaptation period and a 5-week treatment period. At the end of the experimental period, the milk, serum and rumen fluid were sampled and analyzed. The microbiome and metabolome in the rumen fluid were analyzed via 16S rRNA sequencing and untargeted metabolomics, respectively. The results showed that supplementation with inulin (200 g/d per cow) increased the milk yield (P = 0.001), milk protein (P = 0.032), lactose rate (P = 0.004) and proportion of saturated fatty acids (SFA) in milk (P < 0.001), but decreased the proportion of unsaturated fatty acids (USFA) (P = 0.041). Rumen pH (P = 0.040) and the concentration of NH3–N (P = 0.024) were decreased; however, acetate (P < 0.001), propionate (P = 0.003), butyrate (P < 0.001) and lactic acid (LA) (P = 0.043) were increased. The total cholesterol (TC) (P = 0.008) and triglycerides (TG) (P = 0.01) in serum were also reduced. Additionally, inulin addition elevated the relative abundance of several beneficial symbiotic and short-chain fatty acid (SCFA)-producing bacteria, such as Muribaculaceae (false discovery rate [FDR]-adjusted P < 0.01), Acetitomaculum (FDR-adjusted P = 0.043), and Butyrivibrio (FDR-adjusted P = 0.036), while elevating the levels of L-lysine (FDR-adjusted P = 4.24 × 10−3), L-proline (FDR-adjusted P = 0.0158), and L-phenylalanine (FDR-adjusted P = 0.027). In contrast, several pathogens and ruminal bacteria abundant in high-fat diets, such as Escherichia-Shigella (FDR-adjusted P = 0.022), Erysipelotrichaceae__UCG-004 (FDR-adjusted P < 0.01) and RF39 (FDR-adjusted P = 0.042) were decreased along with the reduction of lysophosphatidylcholine (LysoPC) (18:1 (9Z)) (FDR-adjusted P = 1.03 × 10−3), LysoPC (16:0) (FDR-adjusted P = 0.0108), LysoPC (18:2 (9Z, 12Z)) (FDR-adjusted P = 1.65 × 10−3) and 8-methylnonenoate. In conclusion, dietary inulin supplementation could increase the relative abundance of commensal microbiota and SCFA-producing bacteria, upregulate amino acidmetabolism and downregulate lipid metabolism in the rumen of dairy cows, which might further improve lactation performance and the level of serum lipids.  相似文献   

20.
Gastrointestinal microbiota impact host's biological activities, including digestion of indigestible feed components, energy harvest, and immunity. In this study, fecal microbiota of high body weight (HW) and low body weight (LW) growing pigs at 103 days of age were compared. Principal coordinates analysis separated the HW and LW groups into two clusters, indicating their potential differences between microbial community composition. Although the abundances of two major phyla, Firmicutes and Bacteroidetes, did not significantly differ between the HW and LW groups, some genera showed significant differences. Among them, Peptococcus and Eubacterium exhibited strong positive correlations with body weight (BW) and average daily gain (ADG) (Rho > 0.40), whereas Treponema, Desulfovibrio, Parabacteroides, and Ruminococcaceae_unclassified exhibited strong negative correlations with BW and ADG (Rho < ?0.40). Based on these results, the structure of intestinal microbiota may affect growth traits in pigs through host–microbe interactions. Further in‐depth studies will provide insights into how best to reshape host–microbe interactions in pigs and other animals as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号