首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term administration of phenobarbital has been reported to cause hepatic injury in dogs. Phenobarbital induces hepatic enzymes, and it may be difficult to distinguish the effect of enzyme induction on serum liver enzyme activities from actual hepatic damage. The hepatotoxicity of phenobarbital and the impact of enzyme induction on serum liver enzyme activity were investigated prospectively in 12 normal dogs. Phenobarbital was administered for 29 weeks at 5 mg per kilogram of body weight (range, 4.8— 6.6 mg/kg) PO q12h, resulting in therapeutic serum phenobarbital concentrations (20–40 μg/mL). Serum alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), γ-glutamyltransferase (GGT), fasted bile acids (fBA), total bilirubin, and albumin were determined before and during treatment. Lateral abdominal radiographs, abdominal ultrasounds, and histopathologic examinations of liver tissue obtained by ultrasound-guided biopsy were performed before and during treatment. Radiographs revealed a moderate increase in liver size in most dogs. Ultrasonographic examination revealed no change in liver echogenicity or architecture. No evidence of morphologic liver damage was observed histopathologically. ALP and ALT increased significantly ( P < .05), GGT increased transiently, and albumin decreased transiently during the study. There were no significant changes in AST, bilirubin, and fBA. These results suggest that increases in serum ALP, ALT, and GGT may reflect enzyme induction rather than hepatic injury during phenobarbital treatment in dogs. Serum AST, fBA, and bilirubin, and ultrasonographic evaluation of the liver are not affected by the enzyme-inducing effect of phenobarbital and can therefore be helpful to assess liver disease in dogs treated with the drug.  相似文献   

2.
3.
Basal serum thyroxine (T4) concentration and the thyrotropin-releasing hormone (TRH) stimulation test were used to assess thyroid function in 36 critically ill cats examined between July 1996 and October 1998. Of the 36 cats. hyperthyroidism (as underlying or complicating disease) was suspected in 22 based on clinical signs, palpable thyroid nodules, and abnormal thyroid gland histology (study group). Hyperthyroidism was not suspected in the remaining 14 cats, which served as the control group. Based on serum T4 concentrations, suppression of thyroid function was documented in 14 (64%) cats of the study group and in 10 (71%) cats of the control group. The TRH stimulation test revealed an increase in serum T4 of less than 50% of the baseline concentration in 18 (82%) cats of the study group, and in 6 (43%) cats of the control group. In conclusion, based on the results of serum T4 determinations and the TRH stimulation tests, it was not possible to differentiate between cats with clinical and histologic evidence of thyroid dysfunction (hyperthyroidism) and cats with severe nonthyroidal illnesses.  相似文献   

4.
为研究慢性冷热应激对放牧条件下西门塔尔牛生理指标、抗氧化功能及下丘脑-垂体-肾上腺皮质轴(HPA)、交感-肾上腺-髓质轴(SAM)激素分泌的影响,选取内蒙古锡林郭勒盟苏尼特左旗某家庭牧场体质量相近、体况健康的西门塔尔牛20头,试验期间测定试验牛生理指标,于试验期最后一天清晨进行颈静脉采血并制备血清,采用ELISA方法检...  相似文献   

5.
Euthyroid sick syndrome is a common finding in dogs and is attributable to nonthyroidal illness or treatment with any of a variety of drugs such as phenobarbital. In dogs with epilepsy, treatment with anticonvulsant drugs can lead to subnormal plasma thyroid hormone concentrations despite normal thyroid function. One-hundred thirteen dogs with seizure activity were retrospectively evaluated to determine the influence of idiopathic epilepsy (IE) on thyroid hormone concentrations. Blood samples were taken from 60 dogs with IE before initiation of anticonvulsant therapy. Control groups consisted of 34 dogs with IE and receiving anticonvulsants and 19 dogs with secondary epilepsy. Thyroid concentrations consistent with euthyroid sick syndrome were diagnosed in 38% of dogs with untreated IE without clinical signs of hypothyroidism or concomitant diseases. There was a significant correlation (r = 0.363, P = .01) between seizure frequency and plasma thyroid hormone concentrations: the longer the interval between 2 seizure events, the higher the serum total thyroxine concentration. There was no correlation between the degree of alteration of thyroid hormone concentrations and the time span between the most recent seizure event and blood collection, the type of the most recent seizure event, the duration of the complete seizure history, or the predominant seizure type. These results suggest that IE can be a reason for euthyroid sick syndrome in dogs. The effect of phenobarbital on plasma thyroid hormone concentrations must be investigated in future studies, as it might be less pronounced than expected.  相似文献   

6.
The short-term effects of prednisone and phenobarbital on serum total thyroxine (tT4), free thyroxine (fT4), and thyroid stimulating hormone (TSH) were evaluated in euthyroid dogs. Twenty-six beagles were randomly divided into 3 groups receiving, respectively, a placebo, prednisone (1.2 to 2 mg/kg body weight, per os, every 12 hours for 3 weeks), or phenobarbital (1.8 to 3 mg/kg body weight for 1 week, then 2.7 to 4.5 mg/kg body weight, per os, every 12 hours for 2 weeks). Blood samples taken over a 6-week period were assayed for serum tT4, fT4, and TSH. Phenobarbital therapy in our study did not affect serum tT4, fT4, or TSH concentrations. Prednisone therapy, however, significantly decreased serum tT4 and fT4, but did not affect serum TSH concentrations.  相似文献   

7.
Many factors including drugs can influence thyroid function in humans, rats and dogs. Studies in humans report significant effects of non-steroidal anti-inflammatory agents (NSAIDs) on thyroid function tests, which can lead to misinterpretation of the results and inappropriate therapeutic decisions. As NSAIDs are used more and more frequently in dogs, it is important to know to what extent they can influence results. Eighteen spayed female beagle dogs were randomly assigned to three treatment sequences in a 3 x 3 crossover study design with treatments consisting of acetylsalicylic acid (ASA) (25 mg/kg BW q 12 h), ketoprofen (Keto) (1 mg/kg BW q 24 h) or placebo administered for a 1-week period with a 3-week washout period between treatment periods. Blood samples for determination of total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), thyrotropin (TSH), reverse triiodothyronine (rT3), Keto and ASA concentrations were taken during each treatment period on days 0, 1, 3 and 7. During the washout period samples were taken weekly. A significant decrease in TT4 was observed as soon as 24 h after ASA administration, whereas the decrease in TT3 was less pronounced and differed significantly from the placebo only after 1 week of administration. No significant effects were found for free T4 and TSH with ASA administration. No significant effects on thyroid results were found following Keto administration. The results indicate that TT4 can be markedly decreased by ASA therapy and until the results of further studies are available, thyroid function test results should be interpreted cautiously in dogs on NSAIDs therapy.  相似文献   

8.
Adrenal and/or thyroid gland function tests were evaluated in horses at various times during short-term therapy with phenylbutazone, stanozolol, and boldenone undecylenate. There were no significant treatment or time effects on mean basal plasma cortisol concentrations in horses during treatment with the following: phenylbutazone, given twice daily (4 to 5 mg/kg, IV) for 5 days; stanozolol, given twice weekly (0.55 mg/kg, IM) for 12 days; boldenone undecylenate, given twice weekly (1.1 mg/kg, IM) for 12 days; or nothing. There was no significant effect of phenylbutazone treatment on the changes in plasma cortisol concentration during the combined dexamethasone-suppression adrenocorticotropic hormone (ACTH)-stimulation test. Plasma cortisol concentration was significantly decreased from base line at 3 hours after dexamethasone administration and was significantly increased from base line at 2 hours after ACTH in all horses (P less than 0.05). Likewise, the stimulation of basal plasma cortisol concentrations at 2 hours after administration of ACTH (P less than 0.05) was not affected by treatment with stanozolol or boldenone undecylenate. There were no significant treatment effects on mean basal plasma concentrations of thyroxine (T4) or triiodothyronine (T3) among horses during the following treatments: stanozolol, given twice weekly (0.55 mg/kg, IM) for 12 days; boldenone undecylenate, given twice weekly (1.1 mg/kg, IM) for 12 days; or nothing. There was a significant time effect on overall mean basal plasma T4 and T3 concentrations (P less than 0.05): plasma T4 was lower on day 8 than on days 1, 10, and 12; plasma T3 was higher on day 8 than on days 4 and 12.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
OBJECTIVE: To evaluate effects of trimethoprim-sulfamethoxazole (T/SMX) on thyroid function in dogs. ANIMALS: 6 healthy euthyroid dogs. PROCEDURE: Dogs were administered T/SMX (14.1 to 16 mg/kg, PO, q 12 h) for 3 weeks. Blood was collected weekly for 6 weeks for determination of total thyroxine (TT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) concentrations. Schirmer tear tests were performed weekly. Blood was collected for CBC prior to antimicrobial treatment and at 3 and 6 weeks. RESULTS: 5 dogs had serum TT4 concentrations equal to or less than the lower reference limit, and 4 dogs had serum fT4 less than the lower reference limit after 3 weeks of T/SMX administration; cTSH concentrations were greater than the upper reference limit in 4 dogs. All dogs had TT4 and fT4 concentrations greater than the lower reference limit after T/SMX administration was discontinued for 1 week, and cTSH concentrations were less than reference range after T/SMX administration was discontinued for 2 weeks. Two dogs developed decreased tear production, which returned to normal after discontinuing administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of T/SMX at a dosage of 14.1 to 16 mg/kg, PO, every 12 hours for 3 weeks caused decreased TT4 and fT4 concentrations and increased cTSH concentration, conditions that would be compatible with a diagnosis of hypothyroidism. Therefore, dogs should not have thyroid function evaluated while receiving this dosage of T/SMX for >2 weeks. These results are in contrast to those of a previous study of trimethoprim-sulfadiazine.  相似文献   

11.
Adrenocorticotropic hormone (ACTH) stimulation tests were done in healthy and tumour‐bearing dogs. In the tumour‐bearing dogs, plasma endogenous ACTH (eACTH) concentration was measured and adrenal gland size was assessed ultrasonographically. Measurements in the tumour‐bearing dogs were taken prior to therapy. No difference existed in basal or ACTH‐stimulated cortisol concentration between tumour‐bearing and healthy dogs. No difference existed in eACTH concentration between dogs with non‐haematopoietic neoplasia (NHN) and lymphoma. However, of 20 dogs with lymphoma, 15% had increased basal serum cortisol concentration, 5% had an exaggerated response to ACTH and 5% had an increased eACTH concentration. Of 15 dogs with NHN, 20% had increased basal cortisol concentration, 7% had an exaggerated ACTH response and no dogs had an increased eACTH concentration. Of the dogs with lymphoma and NHN, 5 and 13%, respectively, had decreased basal cortisol concentrations; 20% of dogs with lymphoma and 13% with NHN had a subnormal ACTH response. eACTH levels were below the reference range in 10% of dogs with lymphoma and 7% with NHN. Overall, 10 adrenal glands were enlarged in seven dogs, five with lymphoma and two with NHN. The clinical significance of these findings remains to be determined.  相似文献   

12.
Changes in thyroxine (T4), triiodothyronine (T3), and cortisol during a combined adrenal (dexamethasone suppression/adrenocorticotrophic hormone response test) and thyroid function tests (thyroid-stimulating hormone [TSH] response test) were determined in 20 healthy hospitalized pet dogs. The effect of dexamethasone on T4 and T3 changes was evaluated during a simultaneous TSH response/dexamethasone suppression adrenocorticotrophic hormone response test. Greater ranges in basal cortisol concentrations and slower changes after dexamethasone was administered were observed in healthy pet dogs kenneled in a hospital setting than those reported for conditioned laboratory dogs. Pet dogs were observed to demonstrate cortisol suppression more reliably at 4 hours than at 2 hours after dexamethasone was administered. Dexamethasone had no effect on the response to TSH as assessed by T4 and T3 assays, thus supporting the validity of combining adrenal and thyroid response tests in a 5-hour period.  相似文献   

13.
14.
BACKGROUND: Differentiation between hypothyroidism and nonthyroidal illness in dogs poses specific problems, because plasma total thyroxine (TT4) concentrations are often low in nonthyroidal illness, and plasma thyroid stimulating hormone (TSH) concentrations are frequently not high in primary hypothyroidism. HYPOTHESIS: The serum concentrations of the common basal biochemical variables (TT4, freeT4 [fT4], and TSH) overlap between dogs with hypothyroidism and dogs with nonthyroidal illness, but, with stimulation tests and quantitative measurement of thyroidal 99mTcO4(-) uptake, differentiation will be possible. ANIMALS: In 30 dogs with low plasma TT4 concentration, the final diagnosis was based upon histopathologic examination of thyroid tissue obtained by biopsy. Fourteen dogs had primary hypothyroidism, and 13 dogs had nonthyroidal illness. Two dogs had secondary hypothyroidism, and 1 dog had metastatic thyroid cancer. METHODS: The diagnostic value was assessed for (1) plasma concentrations of TT4, fT4, and TSH; (2) TSH-stimulation test; (3) plasma TSH concentration after stimulation with TSH-releasing hormone (TRH); (4) occurrence of thyroglobulin antibodies (TgAbs); and (5) thyroidal 99mTcO4(-) uptake. RESULTS: Plasma concentrations of TT4, fT4, TSH, and the hormone pairs TT4/TSH and fT4/TSH overlapped in the 2 groups, whereas, with TgAbs, there was 1 false-negative result. Results of the TSH- and TRH-stimulation tests did not meet earlier established diagnostic criteria, overlapped, or both. With a quantitative measurement of thyroidal 99mTcO4(-) uptake, there was no overlap between dogs with primary hypothyroidism and dogs with nonthyroidal illness. CONCLUSIONS AND CLINICAL IMPORTANCE: The results of this study confirm earlier observations that, in dogs, accurate biochemical diagnosis of primary hypothyroidism poses specific problems. Previous studies, in which the TSH-stimulation test was used as the "gold standard" for the diagnosis of hypothyroidism may have suffered from misclassification. Quantitative measurement of thyroidal 99mTcO- uptake has the highest discriminatory power with regard to the differentiation between primary hypothyroidism and nonthyroidal illness.  相似文献   

15.
The present study was performed to examine the effects of a repeated noise exposure (4 weeks) on basal and noise-induced plasma adrenocorticotrophin (ACTH), cortisol and corticosteroid binding globulin (CBG) levels, brain glucocorticoid receptors (GR) and corticotropin-releasing hormone (CRH) concentrations as well as on the morphology of adrenal glands in German Landrace pigs. Chronically cannulated pigs were exposed to either a daily stimulation with broad-band noise (2 h, 90 dB) (N1), or to the same stimulus three times a week (N2), or to an equal handling procedure without noise stimulation. Noise exposure caused an increase of basal CBG concentrations in N1 animals in the first week. During noise session, an increase of plasma ACTH and cortisol levels in N1 animals was measured in week 1 followed by a subsequent decrease until week 4. The ACTH and cortisol response of the N2 animals increased after week 1 and was significantly elevated in week 4. Furthermore, noise stress caused an increased hippocampal GR binding of N2 pigs, but had no effects on GR binding in the amygdala and on hypothalamic CRH levels. There were also significant structural modifications in the adrenal gland of N1 pigs resulting in differentiated effects on the adrenal cortex and medulla. The present results show that repeated noise exposure of pigs causes considerable alterations at different levels of the HPA system in association with the frequency of noise stimulation. This may have substantial impact on the general vulnerability of the animal with respect to productivity, health and welfare.  相似文献   

16.
OBJECTIVE: To determine how rapidly trimethoprim-sulfamethoxazole affects serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in euthyroid dogs and how quickly hormone concentrations return to reference values following discontinuation of administration. DESIGN: Prospective study. ANIMALS: 7 healthy euthyroid dogs. PROCEDURE: Dogs were given trimethoprim-sulfamethoxazole (26.5 to 31.3 mg/kg [12 to 14.2 mg/lb], PO, q 12 h) for a maximum of 6 weeks. A CBC and Schirmer tear test were performed and serum total T4 and TSH concentrations were measured weekly. Administration of trimethoprim-sulfamethoxazole was discontinued if total T4 concentration was less than the lower reference limit and TSH concentration was greater than the upper reference limit or if persistent neutropenia developed. RESULTS: Six dogs had total T4 concentrations less than the lower reference limit within 3 weeks; T4 concentration was decreased after 1 week in 3 of these 6 dogs. In these 6 dogs, TSH concentration was greater than the upper reference limit within 4 weeks. In 1 dog, T4 and TSH concentrations were not affected, despite administration of trimethoprim-sulfamethoxazole for 6 weeks. Neutropenia developed in 4 dogs. In 1 dog, the neutropenia resolved while trimethoprim-sulfamethoxazole was still being administered. In the other 3, neutrophil counts returned to reference values 1 week after drug administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of trimethoprim-sulfamethoxazole at a dosage of 26.5 to 31.3 mg/kg, PO, every 12 hours can substantially alter serum total T4 and TSH concentrations and neutrophil counts in dogs within as short a time as a few weeks.  相似文献   

17.
We investigated how long in vivo hepatic cytochrome P450 (CYP) activity is enhanced even after discontinuation of repeated oral administration of phenobarbital (PB) in dogs using antipyrine clearance, which reflects hepatic CYP activity. A single antipyrine (5 mg/kg) was administered intravenously before and 34 days after the repeated oral administration of PB (5 mg/kg, bid) and 2, 4, 6, and 8 weeks after the discontinuation of PB in 5 dogs. Antipyrine clearance was increased by the repeated administration of PB, and remained increased 2 and 4, but not 6 and 8 weeks after the discontinuation of PB. The result suggests that hepatic CYP activity was enhanced by the repeated administration of PB, and this enhancement may last for at least 4 weeks even after its discontinuation.  相似文献   

18.
Studies were conducted to determine the effects of delaying the separation of serum from the clot and of long-term storage of serum samples on the measurement of thyroid hormones in blood from horses using a fluorescence polarization immunoassay. The measured concentrations of T3 and T4 were not affected by leaving serum on the clot for as long as 24 hours at room temperatures. Storage of serum for 19 to 22 months at -20 degrees C resulted in significant increases of measured T4, but not T3. These studies support previous work demonstrating that thyroid hormones are resistant to degradation, immunologically stable, and reasonably insensitive to potential problems of routine specimen handling when measured with an immunoassay.  相似文献   

19.
OBJECTIVE: To determine the effects of etodolac administration on results of thyroid function tests and concentrations of plasma proteins in clinically normal dogs. Animals: 19 healthy random-source mixed-breed dogs. PROCEDURE: Blood samples for measurement of serum thyroxine (T4), 3,5,3'-triiodothyronine (T3), free T4 (fT4), and endogenous canine thyroid stimulating hormone (cTSH) were measured twice before as well as on days 14 and 28 of etodolac administration (mean dosage, 13.7 mg/kg, PO, q 24 h). Plasma total protein, albumin, and globulin concentrations and serum osmolality were measured once before as well as on days 14 and 28 of etodolac administration. RESULTS: Etodolac administration did not significantly affect serum T4, T3, fT4, or cTSH concentrations or serum osmolality. Significant decreases in plasma total protein, albumin, and globulin concentrations were detected on days 14 and 28 of administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results of thyroid function tests are not altered when etodolac is administered for up to 4 weeks. Therefore, interpretation of results of these tests should accurately reflect thyroid function during etodolac treatment. Plasma total protein, albumin, or globulin concentrations that are less than the respective reference range in a dog administered etodolac for > or = 2 weeks may be an effect of treatment rather than an unrelated disease process. A decrease in plasma protein concentrations may reflect subclinical injury of the gastrointestinal tract.  相似文献   

20.
OBJECTIVE: To determine whether phenobarbital treatment of epileptic dogs alters serum thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations. DESIGN: Cross-sectional study. ANIMALS: 78 epileptic dogs receiving phenobarbital (group 1) and 48 untreated epileptic dogs (group 2). PROCEDURE: Serum biochemical analyses, including T4 and TSH concentrations, were performed for all dogs. Additional in vitro analyses were performed on serum from healthy dogs to determine whether phenobarbital in serum interferes with T4 assays or alters free T4 (fT4) concentrations. RESULTS: Mean serum T4 concentration was significantly lower, and mean serum TSH concentration significantly higher, in dogs in group 1, compared with those in group 2. Thirty-one (40%) dogs in group 1 had serum T4 concentrations less than the reference range, compared with 4 (8%) dogs in group 2. All dogs in group 2 with low serum T4 concentrations had recently had seizure activity. Five (7%) dogs in group 1, but none of the dogs in group 2, had serum TSH concentrations greater than the reference range. Associations were not detected between serum T4 concentration and TSH concentration, age, phenobarbital dosage, duration of treatment, serum phenobarbital concentration, or degree of seizure control. Signs of overt hypothyroidism were not evident in dogs with low T4 concentrations. Addition of phenobarbital in vitro to serum did not affect determination of T4 concentration and only minimally affected fT4 concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Clinicians should be aware of the potential for phenobarbital treatment to decrease serum T4 and increase TSH concentrations and should use caution when interpreting results of thyroid tests in dogs receiving phenobarbital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号