首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用正交设计方法,对影响番石榴SRAP反应体系的Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA浓度等进行了优化,建立了适用于番石榴的SRAP反应体系。该优化的20 μL反应体系中包含2.5 mmol/L Mg2+,0.15 mmol/L dNTPs,0.4 μmol/L引物,1.5 U Taq DNA聚合酶和20 ng模板DNA。利用该优化体系通过64对SRAP引物组合对5份番石榴材料进行了SRAP-PCR扩增,结果表明SRAP引物及优化后的反应体系能够有效地用于番石榴种质资源鉴定及遗传多样性分析等研究。  相似文献   

2.
胡椒SRAP反应体系的建立和优化   总被引:1,自引:1,他引:1  
姜艳  刘进平 《中国农学通报》2012,28(31):141-145
建立并优化胡椒SRAP分子标记体系,为海南胡椒属植物亲缘关系和遗传多态性分析、物种和品种鉴定等打下技术基础。利用单因素随机试验对胡椒SRAP-PCR反应体系中各组分(Taq DNA聚合酶、dNTP、模板DNA、引物和Mg2+)的浓度进行优化,同时筛选SRAP-PCR反应的循环数和最适退火温度。通过实验确定了SRAP-PCR反应体系为:反应总体系为20 μL,其中引物0.35 μmol/L,Taq DNA聚合酶1.0 U,dNTP 0.6 mmol/L,Mg2 + 1.5 mmol/L,模板DNA 25~200 ng,同时通过梯度PCR试验,确定引物最佳退火温度;最佳SRAP-PCR反应程序为:94℃预变性5 min;94℃变性30 s,35℃退火30 s,72℃延伸45 s,5个循环;然后94℃变性30 s,48℃退火30 s,72℃延伸45 s,40个循环;最后72℃延伸7 min,4℃保存。SRAP-PCR体系适为胡椒属植物遗传多样性分析奠定了基础,并成功地应用于海南胡椒属植物亲缘关系和遗传多态性分析。  相似文献   

3.
龙眼ISSR反应体系的建立和优化   总被引:8,自引:4,他引:8  
对影响龙眼ISSR-PCR扩增反应的各个参数进行优化,建立适合龙眼的ISSR反应体系:PCR反应体积为20μl,其中模板DNA 25ng,引物0.2μmol/L,dNTP 100μmol/L,Taq DNA聚合酶0.5U,MgCl2 2.5mmol/L,10×PCR缓冲液2.0μl;扩增程序为94℃预变性5min;94℃变性1min,退火温度1min,72℃延伸90s,40个循环;72℃延伸7min  相似文献   

4.
芝麻SRAP反应体系的建立与优化   总被引:5,自引:0,他引:5  
以芝麻幼叶提取的DNA为试验材料,通过对影响SRAP扩增结果的重要反应因素dNTPs、Mg2 + 、Taq酶、随机引物及模板DNA进行优化,建立了芝麻扩增多态性高、稳定性强、带型清晰的SRAP最佳反应体系:dNTPs(10mmol/L)0.30μl,Mg2 +(25mmol/L)1.20μl,Taq酶1.00U,正反引物各50ng,DNA模板80ng,10×Buffer 1.5μl,总体积15μl,为SRAP标记技术在芝麻分子生物学研究方面的应用奠定了基础。  相似文献   

5.
以菜薹基因组DNA为模板,通过正交试验设计,从Mg2+、Taq酶、dNTPs、引物及模板5种因素4个水平对不结球白菜SRAP反应体系进行优化,建立了适合不结球白菜的SRAP-PCR优化反应体系.利用该优化体系,选用30对芸薹属SRAP引物,对5份不结球白菜的基因组进行扩增,筛选出7对具有2条以上特异扩增条带的SRAP引物,验证了该优化体系的稳定性.  相似文献   

6.
以丝瓜基因组DNA为模板,对SRAP反应中主要五个影响因素d NTP浓度、Taq DNA聚合酶浓度、引物浓度、DNA模板浓度、Mg~(2+)浓度进行优化,建立丝瓜SRAP-PCR反应的体系。根据实验确定的最佳反应体系为25μL SRAP体系。25μL SRAP体系为:75 ng DNA,0.2 mmol/L d NTP,1.25 U Taq酶,0.16μmol/L的单条引物,2.0 mmol/L Mg~(2+),2.5μL 10×Buffer。选用33个丝瓜品种对所确立扩增体系及扩增程序进行验证,检测结果表现为扩增产物条带清晰明亮、亮度高、重复性好,表明本试验所确定的反应体系及反应程序适用于丝瓜的SRAP分子标记。  相似文献   

7.
余甘子SRAP反应体系的优化   总被引:1,自引:1,他引:0  
本文报道通过正交设计和单因素优化实验建立余甘子SRAP-PCR优化体系。实验表明PCR反应各因素(模板DNA、Mg2+、dNTPs、引物)对扩增结果均有不同的影响。采用50 ng模板DNA,2.0 mmol?L-1 Mg2+, 0.4 mmol?L-1 dNTPs, 0.3 μmol?L-1 引物的20 μL反应体系可扩增出最清晰丰富的多样性条带。使用该优化体系检测12份余甘子种质资源样品,结果稳定可信,适用于分子遗传研究。  相似文献   

8.
以莲雾DNA为模板,应用正交设计法对SRAP反应体系中的各个主要影响因素进行了优化筛选。结果表明,20 μL反应体系中各组分的最适浓度或用量分别为:1×Buffer,3.0 mmol/L Mg2+,0.3 mmol/L dNTPs,0.4 μmol/L引物,0.5 U Taq DNA聚合酶和40 ng模板DNA。利用该优化体系通过64对SRAP引物组合对7份连雾进行了SRAP-PCR扩增,证实了该体系具有稳定可靠、重复性好、多态性较强等特点。  相似文献   

9.
黄瓜SRAP反应体系的正交设计优化   总被引:16,自引:0,他引:16  
采用正交试验设计方法,对影响黄瓜SRAP反应体系的5种因素(dNTP、模板DNA、引物、Taq聚合酶及变性剂)4个水平进行优化筛选,确立了适合黄瓜SRAP分析的优化反应体系,即在10μL PCR反应体系中含有1μL 10×PCR buffer,150μmol/L dNTP,30 ng模板DNA,0.3μmol/L引物、1.5 U Taq聚合酶,PCR产物变性时用10μL变性剂。  相似文献   

10.
木薯SRAP扩增体系的建立与优化   总被引:4,自引:3,他引:4  
建立适宜木薯DNA的SRAP扩增体系,为木薯分子标记和基因图谱的构建打下基础。以木薯基因组DNA为模板,采用序列相关扩增多态性(sequence related amplified polymorphism,SRAP)技术对木薯DNA进行PCR扩增,逐级优化反应参数。最佳SRAP-PCR反应体系(10Ll)为:DNA (50ng/μl) 0.5μl、10×PCR buffer (Mg2+) 1.0μl、dNTPs (20mM) 0.2μl、primer (50ng) 0.3μl、Taq polymerase (5U/μl) 0.2μl。该程序和体系能很好地满足木薯基因组SRAP扩增的要求,SRAP标记能够很好应用于木薯遗传研究。  相似文献   

11.
桃SRAP-PCR反应体系的建立与优化   总被引:6,自引:1,他引:6  
建立适宜桃基因组DNA的SRAP-PCR扩增体系,为桃基因图谱的构建和分子标记打下基础。以桃基因组DNA为模板,通过正交试验设计,从dNTPs、Mg2+、Taq酶、引物、模板5种因素4个水平对桃SRAP-PCR反应体系进行优化,所建立的体系为25μL:dNTPs为0.12 mmol/L,Mg2+为4 mmol/L,Taq酶2 U,引物为0.3 mmol/L,模板DNA50ng。PCR反应程序为:94℃预变性5 min;94℃变性l min,35℃复性l min,72℃延伸l min,5个循环;94℃变性l min,50℃复性l min,72℃延伸l min,35个循环,72℃延伸10 min。  相似文献   

12.
小型西瓜SRAP技术体系优化   总被引:1,自引:1,他引:1  
为探讨小型西瓜种质遗传分析奠定基础以及不类型西瓜SRAP技术体系的通用性,以小型西瓜F1‘秀丽’为试材,利用正交试验设计,对SRAP-PCR反应体系中的Mg2+浓度、dNTPs浓度、引物浓度、Taq聚合酶浓度和模板DNA浓度进行5因素4水平的筛选分析,用Me3-Em3引物组合进行PCR扩增以确定最优反应体系;进一步应用该优化反应体系,对5个不同引物和37份不同果型西瓜资源DNA进行SRAP-PCR扩增。结果表明,小型西瓜SRAP-PCR最佳反应体系为:10× PCR buffer 2 μL、Mg2+ 3.0 mmol/L,dNTPs 0.2 mmol/L,引物0.5 μmol/L,模板DNA 40 ng、Taq聚合酶0.5 U,总体积为10 μL。不同果型西瓜资源DNA进行SRAP-PCR扩增,电泳条带清晰、稳定性好,说明不同果型西瓜种质SPAP体系具有通用性。  相似文献   

13.
柑桔SRAP和ISSR分子标记技术体系的建立与优化   总被引:16,自引:0,他引:16  
通过对PCR反应程序、反应体系(DNA模板量、PCR反应体积、Mg2 浓度、dNTP浓度、Taq酶用量、引物量)、电泳检测方法的系统优化,建立了柑桔SRAP-PCR和ISSR-PCR体系;以此进行大规模引物筛选,从而建立了柑桔SRAP和ISSR分子标记技术体系.SRAP-PCR:25μL体系,模板DNA25ng,Tris-HCl10 mmol/L,KCl50 mmol/L,Mg2 1.2 mmol/L,dNTP 120 μmol/L,Taq酶1.5U,引物0.4μmol/L,反应程序为94℃预变性5min,35个循环(94℃ 30s,47℃ 1min,72℃ 1min),72℃延伸10min;ISSR-PCR:25μL体系,模板DNA25ng,Tris-HCl10mmol/L,KCl50mmol/L,Mg2 1.6 mmol/L,dNTP200μmol/L,Taq酶1 U,引物0.8μmol/L.筛选出稳定性好、多态性高的24对SRAP引物和13条ISSR引物.  相似文献   

14.
芦笋SRAP反应体系优化及引物筛选   总被引:5,自引:0,他引:5  
本研究以芦笋基因组总DNA为模板,通过对芦笋SRAP反应体系的重要参数进行优化,建立了一套适用于芦笋的SRAP反应体系:25μL的反应体系中,模板DNA量80ng、Mg2+浓度3.0mmol/L、上下游引物各0.2μmol/L、dNTPs0.3mmol/L、Taq DNA聚合酶1U以及1×Buffer。扩增程序为:94℃预变性3min;94℃30s、35℃30s、72℃1.5min,5个循环;然后退火温度提高到50℃,35个循环;最后72℃延伸10min。比较琼脂糖凝胶和变性聚丙烯酰胺凝胶电泳检测SRAP扩增产物的多态性,结果发现:6%变性聚丙烯酰胺凝胶电泳检测扩增产物比琼脂糖的效果好。利用该优化体系筛选引物,从256个SRAP引物组合中筛选出239个,它们具有扩增条带清晰、丰富、重复性好的优点,证明了此优化体系稳定可靠。  相似文献   

15.
苎麻基因组SRAP扩增体系的优化研究   总被引:21,自引:0,他引:21  
以苎麻自交系品种为材料,研究了苎麻SRAP分析过程中的影响因素,包括10xPCR Buffer、模板浓度、Mg^2+、dNTP、引物、Taq酶、循环次数、退火温度等,建立了适于苎麻SRAP分析的PCR反应体系:即在201.1反应体系中,引物浓度为0.3μmol/L;模板DNA的用量为60~100ng;Mg^2+浓度为2.0mmol/L;dNTP浓度为0.2mmol/L;砌酶用量为1U。适宜的扩增程序为先94℃变性1min,前5个循环以94℃变性1min、33℃复性1min、72℃延伸1min进行,接下来将复性温度提高到52℃,其它条件不变,进行30个循环,最后72℃延伸5min,4℃保存。本文讨论了SRAP分子标记在苎麻上的应用前景,提出了应用SRAP分子标记构建苎麻遗传图谱的可行性。  相似文献   

16.
为北沙参的遗传多样性分析提供一种科学的途径。采用SRAP标记技术,以北沙参基因组DNA为模板,优化了SRAP反应体系的各主要参数。建立了稳定可靠的SRAP-PCR反应体系;20μL反应体系中,DNA的量为80ng、Mg2+ 2.5mmol/L、dNTPs 0.25mmol/L、TaqDNA聚合酶为1U、正反向Primer浓度均为0.1μmol/L。该体系适合北沙参遗传多样性分析、遗传图谱构建等研究。  相似文献   

17.
日本沼虾SRAP反应体系正交设计及优化   总被引:3,自引:0,他引:3  
对影响SRAP反应的4个因素(Taq酶、dNTP、Mg2+、引物)4个水平进行正交组合,以建立日本沼虾的SRAP分子标记技术。试验分两步进行:第一步筛选出可有效扩增的引物组合;第二步对筛选出的体系进行优化。结果表明,日本沼虾SRAP反应体系适宜引物组合为Me4Em2,最适条件为在25μL的反应体系中,Mg2+、dNTP、Taq酶、引物浓度分别为2.5 mmol/L、0.25 mmol/L、0.64 U/20μL、0.6μmol/L。本研究结果为SRAP分子标记技术在日本沼虾中的应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号