首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The heritabilities for and the genetic, phenotypic, and environmental correlations among calving difficulty scores (CDS) and measures of size of the pelvic inlet were estimated using 547 records of 2-yr-old heifers from three synthetic breed groups. Calving difficulty score was treated first as a trait of the dam and then as a trait of the calf and was analyzed on three scales: raw scores from 0 to 3 (0 = normal birth, 3 = most difficult delivery requiring a hard pull, veterinary assistance, or surgical intervention), Snell-transformed scores, and a binary (0, 1) scale. Estimates of heritability for CDS as a trait of the dam were similar to those when it was considered a trait of the calf. Heritability estimates for CDS on the raw and transformed scales were similar and moderate in magnitude (.36 +/- .15 to .47 +/- .18) but were higher than most reported estimates. However, on the binary scale the estimates were lower (.26 +/- .17, .28 +/- .14). Estimates of heritability for the horizontal and vertical pelvic diameters and the pelvic area were high, implying that pelvic size in heifers might be readily modified by selection. The genetic and phenotypic correlations between CDS as a dam trait and pelvic dimensions were low, whereas the correlations between CDS and dam weight at calving were moderate. As a calf trait, CDS was highly correlated genetically with calf birth weight, but the phenotypic correlations were moderate.  相似文献   

2.
Correlations between genetic expression in lambs when dams were young (1 yr), middle-aged (2 and 3 yr), or older (older than 3 yr) were estimated with three-trait analyses for weight traits. Weights at birth (BWT) and weaning (WWT) and ADG from birth to weaning were used. Numbers of observations were 7,731, 9,518, 9,512, and 9,201 for Columbia (COLU), Polypay (POLY), Rambouillet (RAMB), and Targhee (TARG) breeds of sheep, respectively. When averaged, relative estimates for WWT and ADG were similar across breeds. Estimates were variable across breeds. On average, direct heritability was greater when environment was young dams (.44 for BWT and .34 for WWT) than when environment was dams of middle age or older (.24 and .28 for BWT and .20 and .16 for WWT, respectively). Maternal heritability was greater when dams were middle-aged or older (.28 and .22 vs .18) for BWT but was greater when dams were younger (.10 vs .05 and .04) for WWT. The estimates of genetic correlations for direct effects across age of dam environments averaged .32 for birth weight and averaged .70 for weaning weight. Average estimates of maternal genetic correlations across age of dam classes were .36 or less for both BWT and WWT. Average estimates of correlations among maternal permanent environmental effects were .49 or less across age of dam classes. Total maternal effects accounted for .33 to .42 of phenotypic variance for BWT and for .09 to .26 of phenotypic variance for WWT. The average estimates of genetic correlations between expressions of the same genotypes with different ages of dams suggest that measurements of BWT of lambs with dams in young, middle, and older age classes should be considered to be separate traits for genetic evaluation and that for WWT measurements with young age of dam class and combined middle and older age of dam classes should be considered to be separate traits for genetic evaluation.  相似文献   

3.
To estimate adjustment factors and genetic parameters for gestation length (GES), AI and calving date records (n = 40,356) were extracted from the Canadian Charolais Association field database. The average time from AI to calving date was 285.2 d (SD = 4.49 d) and ranged from 274 to 296 d. Fixed effects were sex of calf, age of dam (2, 3, 4, 5 to 10, > or = 11 yr), and gestation contemporary group (year of birth x herd of origin). Variance components were estimated using REML and 4 animal models (n = 84,332) containing from 0 to 3 random maternal effects. Model 1 (M1) contained only direct genetic effects. Model 2 (M2) was G1 plus maternal genetic effects with the direct x maternal genetic covariance constrained to zero, and model 3 (M3) was G2 without the covariance constraint. Model 4 (M4) extended G3 to include a random maternal permanent environmental effect. Direct heritability estimates were high and similar among all models (0.61 to 0.64), and maternal heritability estimates were low, ranging from 0.01 (M2) to 0.09 (M3). Likelihood ratio tests and parameter estimates suggested that M4 was the most appropriate (P < 0.05) model. With M4, phenotypic variance (18.35 d2) was partitioned into direct and maternal genetic, and maternal permanent environmental components (hd2 = 0.64 +/- 0.04, hm2 = 0.07 +/- 0.01, r(d,m) = -0.37 +/- 0.06, and c2 = 0.03 +/- 0.01, respectively). Linear contrasts were used to estimate that bull calves gestated 1.26 d longer (P < 0.02) than heifers, and adjustments to a mature equivalent (5 to 10 yr old) age of dam were 1.49 (P < 0.01), 0.56 (P < 0.01), 0.33 (P < 0.01), and -0.24 (P < 0.14) d for GES records of calves born to 2-, 3-, 4-, and > or = 11-yr-old cows, respectively. Bivariate animal models were used to estimate genetic parameters for GES with birth and adjusted 205-d weaning weights, and postweaning gain. Direct GES was positively correlated with direct birth weight (BWT; 0.34 +/- 0.04) but negatively correlated with maternal BWT (-0.20 +/- 0.07). Maternal GES had a low, negative genetic correlation with direct BWT (-0.15 +/- 0.05) but a high and positive genetic correlation with maternal BWT (0.62 +/- 0.07). Generally, GES had near-zero genetic correlations with direct and maternal weaning weights. Results suggest that important genetic associations exist for GES with BWT, but genetic correlations with weaning weight and postweaning gain were less important.  相似文献   

4.
The phenotypic ratio of a calf's weaning weight to its dam's weight is thought to be an indicator of efficiency of the cow. Thus, the objectives of this research were to 1) estimate genetic parameters for the ratio of 200-d calf weight to mature-equivalent cow weight at weaning, its components, and other growth traits; and 2) evaluate responses to selection based on the ratio. Phenotypes evaluated were the ratio (100 kg/ kg; n = 4,184), birth weight (kg; n = 5,083), 200-d weight (kg; n = 4,902), 365-d weight (kg; n = 4,626), and mature-equivalent cow weight at weaning (kg; n = 4,375). In 1989, a randomly selected and mated control line and a line selected for greater values of the ratio were established. Average generation intervals were 3.39 +/- 0.05 and 3.90 +/- 0.08 yr in the ratio selected line and control line, respectively. The ratio selection line (n = 895) accumulated approximately 4.7 SD more selection differential than the control line (n = 912) over 2.5 generations. Data were analyzed with a multiple-trait Gibbs sampler for animal models to make Bayesian inferences. Heritability estimates (posterior mean +/- SD) for direct effects were 0.20 +/- 0.03, 0.46 +/- 0.04, 0.48 +/- 0.03, 0.58 +/- 0.04, and 0.76 +/- 0.02 for ratio, birth weight, 200-d weight, 365-d weight, and cow weight, respectively. Estimates for heritability of maternal effects were 0.58 +/- 0.05, 0.10 +/- 0.02, 0.13 +/- 0.02, and 0.10 +/- 0.02 for ratio, birth weight, 200-d weight, 365-d weight, respectively. Significant response to selection was limited to maternal effects: 1.32 +/- 0.38 ratio units per generation. As the ratio was a trait of the calf, estimated maternal genetic effects on the ratio contained both genetic effects due to dams that environmentally affected progeny performance and direct effects on the reciprocal of cow weight. In the control line, genetic trends in direct and maternal 200-d weight were -1.28 +/- 0.91 and 0.62 +/- 0.92 kg/generation, respectively, and the genetic trend in direct effects on cow weight was -5.72 +/- 2.80 kg/ generation. In the selection line, genetic trends in direct and maternal 200-d weight were 1.43 +/- 0.79 and 2.90 +/- 0.80 kg/generation and the genetic trend in cow weight was -2.79 +/- 2.43 kg/generation. Significant correlated responses were observed in direct effects on birth weight and maternal effects on 365-d weight. Results contraindicate use of the ratio of calf weaning weight to cow weight as a selection criterion.  相似文献   

5.
Genetic parameters for nuclear and cytoplasmic genetic effects were estimated from preweaning growth data collected on three synthetic lines of beef cattle differing in mature size. Lines of small-, medium-, and large-framed calves were represented in each of two research herds (Rhodes and McNay). Variance components were estimated separately by herd and size line for birth weight and 205-d weight (WW) by REML with an animal mode using an average of 847 and 427 calf records from Rhodes and McNay, respectively. Model 1 included effects of fixed year, sex of calf, age of dam, and random additive direct (a), additive maternal genetic (m), covariance (a,m), permanent environment affecting the dam, and residual error. Model 2 differed from Model 1 by including random cytoplasmic lineage effects and by ignoring permanent environmental effects. Model 1--direct (maternal) heritability estimates for birth weight at Rhodes were .62(.03) for small, .67(.06) for medium, and .30(.11) for large lines. Genetic correlations between direct and maternal effects for birth weight were .67, -.16, and .48 for the respective size groups. For WW at Rhodes, direct (maternal) heritability estimates were .30(.29), .30(.14), and .10(.16) for small, medium, and large lines, respectively, with genetic correlations of -.34 (small), -.12 (medium), and .17 (large). Heritability estimates at McNay were similar to those at Rhodes, except that maternal genetic heritabilities for WW were smaller (.10, small; .01, medium; .00, large). Model 2--estimates for nuclear genetic effects were consistent with the estimates from Model 1. Cytoplasmic variance accounted for 0 to 5% of the total random variance in birth weight. For WW, cytoplasmic variance was negligible at Rhodes and accounted for 4% of the total random variance in the large line at McNay, averaging less than the permanent environment. Results failed to indicate that cytoplasmic variance was important for preweaning performance.  相似文献   

6.
Growth and reproductive data were obtained on 779 beef heifers at the San Juan Basin Research Center, Hesperus, Co. Genetic parameters were estimated for age of puberty (AOP), age of first calving (AOC), julian day of first calving (DOC), julian day of second calving (DOSC), birth weight, weaning weight, yearling weight, and average daily gain from weaning to yearling and to cycling weights. The least squares model included birth year, age of dam and breed as fixed effects, sire/breed as a random variable, and day of birth and percent inbreeding as covariates. Day of birth was not included in the analyses of AOC, DOC or DOSC. Paternal half-sib estimates of heritability were: AOP, .10 +/- .17; AOC, .01 +/- .12; DOC, .09 +/- .13 and DOSC, .36 +/- .18. Genetic and phenotypic correlations were generally favorable, but genetic correlations were variable with large standard errors. Inbreeding had a detrimental effect on reproductive traits, and a seasonal effect was present for AOP.  相似文献   

7.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

8.
Records of 9,055 lambs from a composite population originating from crossing Columbia rams to Hampshire x Suffolk ewes at the U.S. Meat Animal Research Center were used to estimate genetic parameters among growth traits. Traits analyzed were weights at birth (BWT), weaning (7 wk, WWT), 19 mo (W19), and 31 mo (W31) and postweaning ADG from 9 to 18 or 19 wk of age. The ADG was also divided into daily gain of males (DGM) and daily gain of females (DGF). These two traits were analyzed with W19 and with W31 in three-trait analyses. (Co)variance components were estimated with REML for an animal model that included fixed effects of sex, age of dam, type of birth or rearing, and contemporary group. Random effects were direct and maternal genetic of animal and dam with genetic covariance, maternal permanent environmental, and random residual. Estimates of direct heritability were .09, .09, .35, .44, .19, .16, and .23 for BWT, WWT, W19, W31, ADG, DGM, and DGF, respectively. Estimates of maternal permanent environmental variance as a proportion of phenotypic variance were .09, .12, .03, .03, .03, .06, and .02, respectively. Estimates of maternal heritability were .17 and .09 for BWT and WWT and .01 to .03 for other traits. Estimates of genetic correlations were large among W19, W31, and ADG (.69 to .97), small between BWT and W31 or ADG, and moderate for other pairs of traits (.32 to .45). The estimate of genetic correlation between DGM and DGF was .94, and the correlation between maternal permanent environmental effects for these traits was .56. For the three-trait analyses, the genetic correlations of DGM and DGF with W19 were .69 and .82 and with W31 were .67 and .67, respectively. Results show that models for genetic evaluation for BWT and WWT should include maternal genetic effects. Estimates of genetic correlations show that selection for ADG in either sex can be from records of either sex (DGM or DGF) and that selection for daily gain will result in increases in mature weight but that BWT is not correlated with weight at 31 mo.  相似文献   

9.
Genetic and environmental parameters for mature weight in Angus cattle   总被引:2,自引:0,他引:2  
Genetic and environmental variances and covariances and associated genetic parameters were estimated for weaning weight, asymptotic mature weight, and repeated mature weights. Data consisted of a set of weight measurements of 3,044 Angus cows born between 1976 and 1990. Mature weight was predicted by individually fitting Brody growth curves (asymptotic weight) and by using weights repeatedly measured after 4 yr of age. Variance and covariance components for mature weight were estimated by REML from a single-trait animal model with asymptotic weight, a two-trait animal model with asymptotic and weaning weight, and a two-trait animal model with repeated weights and weaning weight. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects; and for mature weight, direct genetic and repeated measurements (if in the model). Heritability estimates for weaning weight were similar for both two-trait models (.53 and .59). Estimates of heritability for mature weight were .44, .52, and .53 for the single-trait model with asymptotic weight, two-trait model with asymptotic weight, and two-trait model with repeated measures weights, respectively. The estimate of the genetic correlation between mature and weaning weight was higher for the repeated measures model (.85 vs. .63). A lower heritability estimate for mature weight from the single-trait model was likely due to postweaning culling. Therefore, a genetic evaluation of mature weight from field data should include a trait recorded earlier in life that is less subjected to selective data reporting.  相似文献   

10.
Generalized mixed linear, threshold, and logistic sire models and Markov chain, Monte Carlo simulation procedures were used to estimate genetic parameters for calving rate and calf survival in a multibreed beef cattle population. Data were obtained from a 5-generation rotational crossbreeding study involving Angus, Brahman, Charolais, and Hereford (1969 to 1995). Gelbvieh and Simmental bulls sired terminal-cross calves from a sample of generation 5 cows. A total of 1,458 cows sired by 158 bulls had a mean calving rate of 78% based on 4,808 calving records. Ninety-one percent of 5,015 calves sired by 260 bulls survived to weaning. Mean heritability estimates and standard deviations for daughter calving rate from posterior distributions were 0.063 +/- 0.024, 0.150 +/- 0.049, and 0.130 +/- 0.047 for linear, threshold, and logistic models, respectively. For calf survival, mean heritability estimates and standard deviations from posterior distributions were 0.049 +/- 0.022, 0.160 +/- 0.058, and 0.190 +/- 0.078 from linear, threshold, and logistic models, respectively. When transformed to an underlying normal scale, linear sire, mixed model, heritability estimates were similar to threshold and logistic sire mixed model estimates. Posterior density distributions of estimated heritabilities from all models were normal. Spearman rank correlations between sire EPD across statistical models were greater than 0.97 for daughter calving rate and for calf survival. Sire EPD had similar ranges across statistical models for daughter calving rate and for calf survival.  相似文献   

11.
Single trait selection was practiced in three lines of Hereford cattle at two locations. Bulls were selected within sire families for increased weaning weight (WW) in the WW line (WWL), for postweaning gain (PG) in the PG line (PGL) and at random in the control line (CTL). Data include the performance of 2,467 calves produced from 1967 to 1981. Environmental effects were estimated from CTL (method I) and from multiple regression procedures (method II). Phenotypic and environmental time trends were negative for WW and generally were positive for PG. Estimated genetic gains for WW in WWL were 1.07 +/- .51 kg/yr in bulls and .62 +/- .36 kg/yr in heifers using method I and .50 +/- .31 kg/yr in bulls and .10 +/- .17 kg/yr in heifers using method II. Corresponding values for PG in PGL were .85 +/- .40 and 1.03 +/- .24 kg/yr in bulls and .30 +/- .28 and .37 +/- .12 kg in heifers. Correlated genetic gains for WW in PGL were larger than direct WW gains, whereas genetic gains for PG in WWL were smaller than direct PG gains. From method I, estimates of realized heritability (h2R) for WW were .31 +/- .18 in bulls and .22 +/- .13 in heifers. For PG, h2R was .31 +/- .13 in bulls and .06 +/- .12 in heifers. Using method II, h2R for WW was .09 +/- .08 in bulls and .02 +/- .07 in heifers. Corresponding values for PG were .29 +/- .10 and .11 +/- .08. Joint estimates of the realized genetic correlation between WW and PG were .69 +/- .18 and .46 +/- .31 for methods I and II, respectively. Variation in selection response was evaluated using quasi-replicates. Results of this study indicate that selection for PG improved both WW and PG faster than selection for WW.  相似文献   

12.
Pulmonary arterial pressure (PAP) is an indicator of resistance to blood flow through the lungs and when measured at high altitude is a reliable predictor of susceptibility of an animal to brisket disease, a noninfectious cardiac pulmonary condition. (Co)-variance components for PAP, birth weight, and adjusted 205-d weaning weight were estimated from 2,305 spring-born, registered Angus cattle from a Colorado ranch at an elevation of 1,981 m. A single measure of PAP was collected after weaning on animals born from 1984 to 2003. The same licensed veterinarian measured every animal. Multitrait animal models with and without PAP maternal effects were fitted for a pedigree including 132 sires and 793 dams. The interaction of year x sex was a significant fixed effect (P <0.05) for PAP, but age of dam was not. Age at PAP testing was a significant (P <0.1) linear covariate for PAP, and scores increased 0.012 +/- 0.007 mmHg X d(-1) of age. Heritability of PAP direct was 0.34 +/- 0.05. Maternal heritability converged to a boundary at 0.0, and the model with maternal genetic effects for PAP was not significantly better than a model with only direct effects. Phenotypically, PAP was uncorrelated with birth or weaning weights. Genetically, PAP appeared to have positive, unfavorable relationships with direct effects for birth (0.49 +/- 0.12) and weaning weight (0.50 +/- 0.18). Positive correlations imply sires whose offspring exhibited resistance to brisket disease had lower weights and gains. A model that evaluated PAP in females and males as different traits had heritability estimates for each sex of 0.38 +/- 0.07 and 0.46 +/- 0.09, respectively, with a genetic correlation of 0.64 +/- 0.12 between the sexes and was not significantly better than the model assuming homogeneity by sex and a unit genetic correlation between sexes. The results suggest that PAP is moderately heritable in spring-born Angus cattle acclimatized and tested at high altitude, and selection for low PAP scores would be effective. Selection for growth at low altitude will produce cattle less suited to high altitude.  相似文献   

13.
Data from 439 Brahman (B) and grade Brahman (GB; 7/8 Brahman or more) calves born from 1970 through 1975 at the USDA Subtropical Agricultural Research Station were used to estimate least-squares means, heritabilities and genetic correlations for sheath area and preweaning growth traits. Grade Brahman calves weighed more (P less than .01) at birth and gained more (P less than .01) preweaning than B calves, although sheath areas were not different. Males exceeded (P less than .01) heifers in all preweaning growth traits and had larger (P less than .01) sheath areas. Heritabilities were: sheath area, .45 +/- .13; birth weight, .25 +/- .13; average daily gain, .38 +/- .15 and weaning weight, .35 +/- .15. Genetic correlations between sheath area and birth weight, average daily gain and weaning weight were .23 +/- .35, .58 +/- .25 and .52 +/- .27. These results suggest selection could be effective in reducing sheath area in B and B-derivative breeds, but would be antagonistic to preweaning growth traits. Because of relatively low phenotypic correlations between sheath area and preweaning growth rate (.27) and weaning weight (.29), continued emphasis on increasing growth rate or weaning weight could generally be maintained with careful attention to avoiding large sheath areas through independent culling level or index selection procedures.  相似文献   

14.
Genetic parameters from both single-trait and bivariate analyses for prolificacy, weight, and wool traits were estimated using REML with animal models for Targhee sheep from data collected from 1950 to 1998 at the U.S. Sheep Experiment Station, Dubois, ID. Breeding values from both single-trait and seven-trait analyses calculated with the parameters estimated from the single-trait and bivariate analyses were compared across years of birth with respect to genetic trends. The numbers of observations were 38,625 for litter size at birth and litter size at weaning, 33,994 for birth weight, 32,715 for weaning weight, 36,807 for fleece weight and fleece grade, and 3,341 for staple length. Direct heritability estimates from single-trait analyses were 0.10 for litter size at birth, 0.07 for litter size at weaning, 0.25 for birth weight, 0.22 for weaning weight, 0.54 for fleece weight, 0.41 for fleece grade, and 0.65 for staple length. Estimate of direct genetic correlation between litter size at birth and weaning was 0.77 and between birth and weaning weights was 0.52. The estimate of genetic correlation between fleece weight and staple length was positive (0.54), but was negative between fleece weight and fleece grade (-0.47) and between staple length and fleece grade (-0.69). Estimates of genetic correlations were near zero between birth weight and litter size traits and small and positive between weaning weight and litter size traits. Fleece weight was slightly and negatively correlated with both litter size traits. Fleece grade was slightly and positively correlated with both litter size traits. Estimates of correlations between staple length and litter size at birth (-0.14) and litter size at weaning (0.05) were small. Estimates of correlations between weight traits and fleece weight were positive and low to moderate. Estimates of correlations between weight traits and fleece grade were negative and small, whereas estimates between weight traits and staple length were positive and small. Estimated breeding values averaged by year of birth from both the single- and seven-trait analyses for the prolificacy and weight traits increased over time, whereas those for fleece weight decreased slightly and those for the other wool traits were unchanged. Estimated changes in breeding values over time did not differ substantially for the single-trait and seven-trait analyses, except for traits highly correlated with another trait that was responding to selection.  相似文献   

15.
Weight, hip height, heart girth, pelvic height, pelvic width and scrotal circumference were measured at 403 and 490 d on 427 Hereford bulls. The bulls were members of a random-selection herd so estimates of genetic parameters should have a minimum of bias due to selection. Heritabilities and genetic correlations were estimated by normal paternal half-sib (PHS) correlation procedures. In addition, 256 son-sire pairs (RSS) were used to estimate heritabilities and genetic correlations by regression and covariance methods. The PHS method produced heritability estimates in the range of .41 to .58 for all measures at both ages, with the exceptions of hip height at 403 d (.24) and pelvic height at 490 d (.23). The estimates derived in the RSS method ranged from .10 to .60. The RSS relationship would contain a portion of any maternal X direct covariance effects. A difference in heritability estimated by the two methods could be a reflection of this covariance. Genetic correlations tended to be larger than phenotypic and, in several cases, were negative. The difference in the correlation between two measurements taken at 403 d vs the same correlation estimated at 490 d was not readily explainable but may be evidence for differences in maturation rates or maternal effects. Scrotal circumference had a positive genetic correlation with weight and heart girth and near 0 or negative genetic correlations with pelvic measures. Hip height had positive genetic correlations with weight and heart girth at 403 and 490 d and with pelvic measurements at 403 d, but the correlations were not as large at 490 d.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The objective of this research was to partition phenotypic variation in calf gain from birth to weaning, and milk production measured, by the weigh-suckle-weigh method, and udder score of cows into genetic and nongenetic components. Data were from the Line 1 Hereford population maintained by USDA-ARS at Miles City, MT, and included observations of pre-weaning gain (n = 6,835) from 2,172 dams, milk production (n = 692) from 403 cows, and udder score (n = 1,686) from 622 cows. Data were analyzed using a Gibbs sampler for multiple-trait animal models. Results are reported as means +/- SD derived from the posterior distributions of parameter estimates. Mean estimates of the phenotypic variance of preweaning gain, milk production, and udder score were 476.3 kg2, 8.88 kg2, and 1.89 (1 to 9 scale), respectively. Estimates of phenotypic correlations between preweaning gain and milk production, preweaning gain and udder score, and milk production and udder score were 0.37 +/- 0.04, - 0.07 +/- 0.04, and - 0.09 +/- 0.05, respectively. Estimates of heritability for direct and maternal preweaning gain, milk production, and udder score were 0.13 +/- 0.03, 0.25 +/- 0.04, 0.25 +/- 0.06, and 0.23 +/- 0.05, respectively. Genetic correlations of milk production with maternal preweaning gain and udder score were estimated as 0.80 +/- 0.08 and - 0.36 +/- 0.16, respectively. Posterior distributions of the other genetic correlations all contained 0.00 within the respective 90% probability density posterior intervals. Estimates of repeatability of maternal preweaning gain, milk production, and udder score were 0.43 +/- 0.03, 0.39 +/- 0.05, and 0.34 +/- 0.03, respectively. Breeding value for maternal gain from birth to weaning was highly predictive of breeding value for milk production. Direct measurement of milk production to use in genetic improvement may not be justified because it is difficult to measure, and selection based on the breeding value for maternal preweaning gain may be nearly as effective in changing milk production as direct selection. A potentially undesirable consequence of selection to increase milk production is the degradation of udder quality. However, this correlation is not so strong as to preclude simultaneous improvement of milk production and udder quality using appropriate predicted breeding values for each trait.  相似文献   

17.
Postweaning growth data, collected from a Hereford herd located in the Southwest, were used to estimate genetic parameters for weights and gains. The herd was maintained on unsupplemented range forage, and average weight losses from weaning to yearling age were 9% for bulls and 12% for heifers. Data were grouped into years with poor and good environments based on contemporary group means for gain from 8 to 12 mo. Postweaning growth data (12- and 20-mo weights, 8- to 12-mo gain and 12- to 20-mo gain) were analyzed by least squares methods with a model that included year of birth, sire within year of birth, age of dam and a covariate of age for 12- and 20-mo weights. Heritability estimates of 12- and 20-mo weights for bulls were .58 +/- .15 and .55 +/- .22 in good environments vs .32 +/- .11 and 1.09 +/- .15 in poor environments; for heifers these estimates were .19 +/- .08 and .35 +/- .12 in good environments vs .38 +/- .07 and .47 +/- .09 in poor environments. Heritability estimates of 8- to 12-mo and 12- to 20-mo gain for bulls were .32 +/- .14 and .51 +/- .24 in good environments vs .16 +/- .11 and .09 +/- .14 in poor environments; for heifers these estimates were .21 +/- .08 and .14 +/- .10 in good environments vs .10 +/- .06 and .44 +/- .10 in poor environments. Genetic correlations among the preweaning traits of birth and weaning weight and postweaning weight traits were positive and of a moderate to large magnitude, with the exception of birth and 12-mo weight in a poor environment (-.06 +/- .49). Genetic correlations between 8- to 12-mo gain and birth weight in poor environment and weaning weight in all environments were negative (range from -.06 +/- .33 to -.53 +/- .41). Genetic correlations among 12- and 20-mo weights were large and positive in all environments. Relationships among gains were more variable.  相似文献   

18.
Data collected from 1957 through 1985 from a Hereford herd located in the Southwest were analyzed separately for each sex to evaluate the heritabilities of and genetic correlations among preweaning growth traits within groups of environmentally similar years. Data were grouped into years with poor, moderate and good environments based on contemporary group means for male calves' weaning weight. A total of 7,690 records were analyzed for birth weight, weaning weight and preweaning daily gain with a model that included year of birth, sire within year of birth, age of dam and a covariate of day of birth for birth weight or age at weaning for the weaning traits. Year of birth was a significant source of variation in all environments for all traits, accounting for more of the variation in the good and poor years than in moderate years. Heritability estimates for all traits were greater in good and moderate years than in poor years for bull calves. For heifers, however, estimates for weaning weight and preweaning daily gain were greater in the poor environment. Genetic correlations among birth weight and preweaning gain increased from the good environment to the poor environment (-.49 +/- .26 to .82 +/- .56 for male calves and -.09 +/- 2.6 to .46 +/- .25 for female calves) but phenotypic correlations were near zero in all environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Records collected during 1971 through 1979 from 101,606 hogs raised in 18 Nebraska Specific Pathogen Free herds were analyzed. Traits considered were backfat at 100 kg (BF), weight at 140 d of age (WT) and, in some analyses, number of live pigs/litter at birth (NBA). The phenotypic correlation of BF and WT, averaged across herds, was -.07. The correlations between BF and NBA and between WT and NBA were .04 and -.05, respectively. Average phenotypic standard deviations for BF, WT and NBA were 2.6 mm, 8.8 kg and 2.0 pigs. Estimates of the heritability of BF and WT were lower than most estimates reported from university research herds. Within breed, herd and sex estimates of heritability ranged from -.22 and .51 (unweighted mean = .16 +/- .025) for BF and ranged from -.28 to .49 (mean = .16 +/- .016) for WT. Estimates of the genetic correlation between BF and WT were extremely variable (mean = -.62 +/- 14.3, range = -9.42 to 1.30) among breed-herd-sex subclasses.  相似文献   

20.
Heritability of 2-yr-old heifer calving difficulty score was estimated in nine purebred and three composite populations with a total of 5,986 calving difficulty scores from 520 sires and 388 maternal grandsires. Estimates were 0.43 for direct (calf) genetic effects and 0.23 for maternal (heifer) genetic effects. The correlation between direct and maternal effects was -0.26. Direct effects were strongly positively correlated with birth weight and moderately correlated with 200-d weight and postweaning gain. Smaller negative correlations of maternal calving difficulty with direct effects of birth weight, weaning weight, and postweaning gain were estimated. Calving difficulty was scored from 1 to 7. Predicted heritabilities using seven optimal scores were similar to those using four scores. The predicted heritability using only two categories was reduced 23%. Phenotypic and direct genetic variance increased with increasing average population calving difficulty score. The estimated direct and maternal heritabilities for 2-yr-old calving difficulty score were larger than many literature estimates. These estimates suggested substantial variance for direct and maternal genetic effects. The direct effects of 2-yr-old calving difficulty score seemed to be much more closely tied to birth weight than were maternal effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号