首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary This article describes the properties of wood polymer composites consisting of linear low density polyethylene (LLDPE) and wood flour (WF). In an attempt to improve the interfacial adhesion between the matrix and the filler, different compatibilizers were used. The interaction between polymer and wood were studied by comparing LLDPE/WF composites with composites when compatibilizer was added. The experimental measurements were conducted by impact and tensile strength testing and Scanning Electron Microscopy (SEM). The mechanical properties of the composites were improved with SEBS triblock copolymer modified with maleic anhydride and with the ionomer polymer, Surlyn, as compatibilizers. SEM fractography confirmed better adhesion between wood particles and LLDPE matrix when SEBS was present.This study was financed by the Swedish National Board for Industrial and Technical Development (NUTEK) which is gratefully acknowledged  相似文献   

3.
The results of wood liquefaction by allyl alkyl imidazolium ionic liquids indicated that wood (Metasequoia glyptostroboides) without any pretreatment is liquefied in ionic liquids at temperatures below 100°C within 40 min. Acidic ionic liquids show low residue even at 70°C and 30 min. The liquid/wood ratio of the reactants affects the reaction course. After the reaction is over, ionic liquids can be separated from the products and recycled at least five times maintaining good liquefaction activity. The suitability of the ionic liquids for wood liquefaction is ascribed to the functional groups of the ionic liquids. Influencing factors of wood liquefaction are discussed in relation to the ionic composition of the ionic liquids.  相似文献   

4.
Summary Thermal movement of wood and wood composites was studied and compared with that of random and oriented phenolic foams. Cell orientation was a dominate factor determining the thermal response of these structures. In dried wood, thermal movement in the direction parallel to the cells (longitudinal) decreased in dimension during heating while the radial and tangential directions expanded under similar heating condition. Oriented foams showed more restraint in thermal movement in the parallel to orientation direction. These findings indicate constraining forces act on the direction parallel to the cells while more flexibility exists in perpendicular directions. Wood element size and orientation and the manufacturing process also influence the thermal response in wood composites. The experimental results also revealed the potential fire hazard of waferboard type of composites.  相似文献   

5.
Several ionic liquids promote depolymerization of wood components, i.e., polysaccharides and lignin, into low molecular weight compounds, some of which further re-polymerize into resin-like compounds. In this study, the depolymerization/re-polymerization of wood components in ionic liquids was applied to preparation of plywoods from Japanese cedar (Cryptomeria japonica) veneers by employing ionic liquids as adhesives. The adhesive solution was prepared by mixing an ionic liquid (pyridine hydrochloride ([Py][Cl]), imidazole hydrochloride ([IM][Cl]), or 1-ethylpyridinium chloride ([EtPy][Cl])) with water and d-glucose in various weight ratios. Tensile shear test of the three-ply plywoods prepared from the veneers and the adhesive solution through hot-pressing indicated that the plywood bonded with the [IM][Cl]-based solution ([IM][Cl]/water/glucose ratio: 9/3/2) exhibited the highest strength. Scanning electron microscope observation on the plywoods suggested that the ionic liquids softened the cell walls of the probably plywood through the depolymerization/re-polymerization reactions and the cell walls were compressed during the hot-pressing process. Entwining of the compressed cell walls and van der Waals force enhanced by the compression were considered to be origins of the adhesion of the veneers.  相似文献   

6.
Acetylated wood meals of Sugi (Cryptomeria japonica D.Don) wood were prepared by mechanochemical processing using a high-speed vibration rod mill. Weight percent gain (WPG) of the acetylated wood meals ranged from 7.0 to 35.5 %. Wood–plastic composites (WPCs) containing 50 % acetylated woods were produced by an injection molding technique. The polymer matrix used was polypropylene homopolymer. Maleic anhydride-grafted polypropylene (MAPP) was also used as a compatibilizing agent. The mechanical properties of WPCs in bending and tensile tests were independent of WPG of acetylated wood meals, and the test values for WPCs containing acetylated wood meals were lower than that of unmodified wood meal. The use of MAPP increased bending and tensile strength, but no effect on bending modulus was found. An increase in WPG significantly decreased water absorbability and thickness swelling of WPCs as measured by dimensional stability tests. These results demonstrated that mechanochemical processing is a promising technique for preparing WPC material with improved dimensional stability. The future challenge is to inhibit the decreases in mechanical properties of WPCs containing acetylated wood meals.  相似文献   

7.
Wood meals of Sugi (Cryptomeria japonica D.Don) passing 2.0 mm and retained on 1.0 mm mesh screens were milled along with acetic anhydride (AA) and pyridine as a catalyst in a high-speed vibration rod mill at ambient temperature. The weight percent gain (WPG) of the chemically modified wood was calculated based on the yield after washing with deionized water. The effects of amounts of AA and catalyst added, pulverization time, and saponification of the acetylated wood on WPG were examined. In addition, FT-IR analysis, and water vapor adsorption and desorption tests were performed as functions of the WPG. Increases in WPG, the acetyl contents of the acetylated wood after saponification, changes in the FT-IR spectra after pulverization, and the water vapor sorption isotherms showed that the one-step acetylation systematically modified the hydroxyl groups of the wood into acetyl groups. Up to 38 % WPG was obtained at 100 phr AA and 15 phr catalyst, and 120 min pulverization. Pulverization time and the amounts of AA and catalyst added to the wood meals could be adjusted to obtain acetylated wood meal with the desired WPG. These demonstrated that the mechanochemical acetylation is a method to prepare acetylated wood meals with high WPG at less reaction time and required AA addition.  相似文献   

8.
A database from a series of cross-sectional density distributions in a 0.16 × 0.34 × 1.28m strand-based wood composite specimen has been successfully developed using X-ray computer tomography (CT) techniques. Using conventional image processing techniques, the CT images of the specimen were analyzed with respect to the size and position of the macro-voids. Finally, CT images and the measurement results were converted and exported into MS Excel spreadsheets to provide information on the three-dimensional distribution of macro-voids so those who are not familiar with image processing and formats can handle the data easily. In future, this type of database can be used to develop a model for the prediction of macro-void presence and distributions in strand-based wood composites.Part of this report was presented at the annual meeting of the Forest Products Society, Vancouver, BC, Canada, June 1997  相似文献   

9.
A simple experimental setup for mode III and mixed mode (I?+?III) fracture tests with anisotropic materials under steady state crack propagation has been developed. Load-displacement curves can be recorded up to the complete separation of the specimen. From the load-displacement curves several mechanical material parameters can be derived. The tests have been performed for solid wood and different wood composites, being PARALLAM® PSL in different orientations, particleboard and INTRALLAM® LSL, and the fracture behaviour is characterised by the specific fracture energy.  相似文献   

10.
For making efficient use of waste wood ash emitted from wood biomass plant, the wood and wood ash-based hydroxyapatite (HAp) composite was produced and their flammability characterization was studied by thermogravimetric (DTA-TG) analysis, oxygen index (OI) measurement and cone calorimeter test. The results show that the exothermic and weight loss peaks in DTA-TG combustion profiles due to their significant thermal decomposition were weakened by the HAp agent impregnation. In addition, the OI value of HAp composites was increased by the HAp combining and the OI showed a correlation with the HAp contents. Also, the cone calorimeter study revealed that the heat release rates were decreased with increasing amount of HAp injection and accordingly their total heat release has an inverse relationship to the HAp contents. These results indicate that the treatment with wood ash-based HAp agents can enhance the flame retardancy of the treated woods.  相似文献   

11.
12.
To investigate the affinity of acetylated wood for organic liquids, acetylated yezo spruce wood specimens were soaked in various liquids, and their swellings were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in liquids having low hydrogen bonding power such as benzene and toluene in which the untreated wood was swollen only slightly or very slowly. On the other hand, the swollen volume of wood in water, ethylene glycol, and alcohols remained unchanged or slightly decreased after the acetylation. The effect of acetylation was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the reduction of polarity and the scission of hydrogen bonds in the amorphous wood constituents where the hydrophilic hydroxyl groups were substituted by hydrophobic acetyl groups.  相似文献   

13.
A model describing axial flow of liquids through conifer wood   总被引:3,自引:0,他引:3  
Summary A mathematical model has been derived for the prediction of the resistance to viscous liquid flow generated by tracheid lumina and various parts of the bordered pit structure. The model also takes into account changes in pit geometry occurring as the pit membrane deflects when a pressure differential is applied across it. Methods for checking whether flow is truly viscous are presented.Data calculated for Pinus sylvestris suggest that the permeability of earlywood differs markedly from that of latewood; that in latewood the pit apertures contribute significantly to the total resistance to flow; and that kinetic energy corrections to the Poiseuille viscous flow equation may be of some importance at high flow rates.The authors wish to acknowledge the encouragement of Professors Matthews and Roche.  相似文献   

14.
李淑君  李坚 《林业研究》1999,10(3):183-186
Inthe21stcentury,thewoodsupplyinChinawillcontinLJetobelessthanthedemand,soChinawillneedtousewoodasetfectivelyasPossible.Theuseotwoodcompositesisaveryefficientwaytosavewood.ChinalackssLJfficientforeststomeetitsdemandforwood,especiallyinfinequalitywoods.BecauseofChina'spopulationandfiberdemand,efficientuseofwoocJismoreimportanttoChinathanthattosomeothercoLJntries.However,Chinawasneitherconvincedofthisandnordiditpayattentiontothestudyofwoodcompositesbeforethe1970's.FacingthewoodcrisisChinaf…  相似文献   

15.
The search for new value-added uses for oilseed and animal proteins led us to develop protein-based wood adhesives. Low-fat soy and peanut flours and blood meal were hydrolyzed in an alkaline state, and PF-cross-linked protein resins were formulated by reacting the protein hydrolyzates with phenol-formaldehyde (PF) in solid-tosolid ratios ranging from 70% to 50% hydrolyzates and 30% to 50% PF. Physical properties of medium density fiberboard (MDF) bonded with protein-based phenolic resins were compared to those of boards bonded with ureaformaldehyde (UF) and PF resins, and flakeboard bonded with soy protein-based phenolic resin was compared to PF-bonded board. As MDF binders, adhesive properties of protein-based phenolic resins depended upon protein content of proteinacious materials. MDF board bonded with blood-based phenolic resin was comparable to PF-bonded board and met the requirements for exterior MDF. Boards bonded with soy-protein-based phenolic resin met requirements for interior MDF, while peanut-based phenolic failed to meet some of the requirements. Flakeboard bonded with soy-protein-based phenolic resins was inferior to PF-bonded board but outperformed PF-bonded board in accelerated aging tests. Although they exhibit a slow curing rate, the cost effectiveness and superior dimensional stability of protein-based phenolic resins may make them attractive for some uses.  相似文献   

16.
The treatability of wood (sapwood ofCryptomeria japonica D. Don) and wood-based composites (particleboard, waferboard, medium-density fiberboard, plywood) with vapor-boron was good, and the treated materials proved to be resistant to decay fungi and subterranean termites in laboratory bioassays. No difference in effectiveness was noted between vapor-boron and liquid-boron treatment of wood. Toxic threshold values determined for solid wood were 0%–0.24%, 0.26%–0.51%, and 0.26%–0.51% BAE (boric acid equivalent), respectively, against the white-rot fungusTrametes versicolor (L.: Fr.) Pilat, the brown-rot fungusFomitopsis palustris (Berk. et Curt.), and the subterranean termiteCoptotermes formosanus Shiraki. A concentration of less than 1% BAE seemed sufficient to control biological attacks on composites, although the toxic limits could not be determined more accurately because of the tested range of boron retention. High boron retention was needed to meet the performance requirements for slow-burning materials when a fire-retardant agent was not incorporated into the glue line.  相似文献   

17.
ABSTRACT

Thermomechanical wood fibers, as usually used for medium density fiberboard or cardboard production, feature promising characteristics, like a high aspect ratio, for the utilization in thermoplastic composites. The present study investigates the influence of fiber loading and fiber geometry on the mechanical properties of wood-polypropylene composites in order to confirm the results that were found in a previously published literature review. Composites were compounded at fiber contents from 20 to 60 wt.%, using a co-rotating twin-screw extruder and subsequently injection molded to test specimens. Field emission scanning electron microscopy was carried out to evaluate the fracture morphology of the composites. Fiber length was evaluated using an applying a dynamic image analysis system. Compounding reduced fiber lengths up to 97%. The mechanical properties decreased with increasing fiber content for composites without a coupling agent. Strength properties peaking at a fiber content of 50?wt.% for composites containing MAPP. Tensile strength and flexural strength reached 48.1 and 76.4 MPa, respectively. However, it was found that the processing of these fibers into conventional compounding equipment is still challenging.  相似文献   

18.
19.
The aim of the present study was to find and describe the relationship between damping properties and both the number of layers and the fiber orientation in wood-veneer-composite specimens. The testing apparatus was a simple torsional pendulum in which the frequencies of the resulting free vibrations were maintained between 13 and 23 Hz. Cross-sectional (30 × 30 mm) specimens with a total length of 250 mm were used. The specimens were cut from manufactured wood-veneer-composite panels (both 0°/90° and 0°/0° oriented) with up to 13 layers. Existing problems such as nonlinearities, which are often responsible for weighting results, were taken into account by using several mathematical approaches. The results led to a consistent picture of the damping properties across the measured range. We found that the damping ratio increased for the 0°/90° orientation with increasing numbers of layers in a cross-sectional specimen of constant outer dimensions. This effect could not be reproduced for specimens oriented 0°/0°.  相似文献   

20.
X-ray is irradiated in some wood composites(multi-layer particleboard.sin-gle-layer particleboard,reconsolidated wood,).According to the gray degree principle(0-255 grade degree)and the corresponding relation between density and gray,X-raynegatives are scanned.The numbers and pictures of every degree density are obtained andaccurate composite densities are counted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号