首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
微波前处理酶法制备微孔淀粉研究   总被引:2,自引:1,他引:1  
李维杰  杨光  刘灿召  耿玮蔚  袁超 《安徽农业科学》2009,37(33):16221-16223
[目的]提高微孔淀粉的吸附性能,缩短其生产时间。[方法]以玉米原淀粉为材料,对其施加40 W/g的超声波处理10 min,然后用α-淀粉酶和葡萄糖苷酶的pH缓冲液制备微孔淀粉,研究各因素对微孔淀粉吸油率的影响。[结果]其他因素固定不变,当反应温度为30 ℃时,微孔淀粉的吸油率最低,反应温度在50-55 ℃时,微孔淀粉的吸油率较高;缓冲液pH值在5.0-5.5时,微孔淀粉的吸油率较高,缓冲液pH值高于5.5时,微孔淀粉的吸油率急剧下降;当缓冲液pH值为5.0,反应温度为50 ℃,反应时间为12 h,α-淀粉酶用量为75 U/g,葡萄糖苷酶用量为46 U/g时,微孔淀粉的吸油率最高,达132.8%。[结论]微波预处理可提高微孔淀粉的吸油率。  相似文献   

2.
响应面法优化高吸油性淀粉制备工艺   总被引:1,自引:0,他引:1  
以马铃薯淀粉为原料,吸油率为评价指标,研究了双酶法分步处理淀粉,提高吸油率的最佳工艺方案.结果表明:α-淀粉酶处理后淀粉的吸油率可以达到86.17%,糖化酶的作用可以进一步提高吸油率.酶解的pH、温度、时间和酶使用量均能影响糖化酶的处理效果,响应面试验结果表明:当糖化酶添加量为1%、pH5.5、温度50℃、酶解时间12h时,测得微孔淀粉的吸油率为107.51%,与预测值108.16%的相对误差为0.60%,差异不显著,说明该模型拟合度好,优化后得到的微孔淀粉制备工艺准确可靠,较α-淀粉酶处理后淀粉的吸油率提高了21.34%.  相似文献   

3.
[目的]研究糖化酶与α-淀粉酶制备马铃薯微孔淀粉的工艺。[方法]以马铃薯淀粉为原料,淀粉水解率和油脂吸附率为评价指标,考察反应温度、酶配比[糖化酶∶α-淀粉酶(W/W)]、加酶量、底物量浓度[淀粉∶溶液(W/V)]、缓冲液pH和反应时间6个因素对马铃薯淀粉微孔化的影响。[结果]马铃薯微孔淀粉的最佳制备工艺条件为反应温度45℃,酶配比6∶1,加酶量1.0%,底物量浓度0.14g/ml,缓冲液pH 4,反应时间8 h;在该条件下制得的微孔淀粉的油脂吸附率为70.2%,淀粉水解率为34.16%。[结论]该研究为微孔淀粉的开发和利用提供了依据。  相似文献   

4.
[目的]制备大米多孔淀粉,测定其吸附性能。[方法]以浸碱法自制的大米淀粉为原料,采用糖化酶、α-淀粉酶复合酶水解的方法制备大米多孔淀粉,以吸油率、比孔容及对桔子香精的缓释性能等指标评价大米多孔淀粉吸附性能。[结果]制备大米多孔淀粉的最佳酶解工艺条件为:反应温度35℃,时间16 h,pH 4.5,糖化酶、α-淀粉酶酶配比10∶1,底物浓度为0.2 g/ml,颗粒粒度40目。在此条件下制备的大米多孔淀粉吸油率最高,达到58.14%。[结论]大米多孔淀粉有较高的吸油率,较大的比孔容,较好的缓释桔子香精的功能,可作为多种物质的吸附载体并广泛应用。研究可为我国大米资源综合开发提供有效途径,并对我国的多孔淀粉工业化生产起到一定推动作用。  相似文献   

5.
[目的]以马铃薯淀粉为原料,研究复合酶法制备微孔淀粉的最佳工艺条件。[方法]以淀粉油脂吸附率作为试验指标,选取酶解温度、酶配比、加酶量、底物量浓度、缓冲液pH和酶解时间为影响因素进行正交试验。[结果]通过正交试验得出最佳工艺参数为:酶解温度50℃,酶配比4∶1,加酶量2.0%,底物量浓度0.14 g/ml,缓冲液pH=4,反应时间9 h,油脂的吸附率高达83.2%。[结论]得出了复合酶法制备马铃薯微孔淀粉的最佳工艺参数,为马铃薯微孔淀粉的工业化生产提供了参考数据。  相似文献   

6.
用淀粉糖化酶、α-淀粉酶、普鲁兰酶水解甘薯淀粉制备一种具有吸附功能的微孔淀粉载体.研究表明,淀粉糖化酶对生甘薯淀粉作用力最强;淀粉糖化酶水解制备甘薯微孔淀粉的最佳工艺条件是:温度45℃,pH值4,酶用量为1%,时间24 h,水解率为51.52%.微孔淀粉对色素、水溶性维生素、油脂的吸附能力远远高于原淀粉.通过交联反应能明显提高微孔淀粉的结构性能和吸附性能.  相似文献   

7.
甘薯微孔淀粉的制备技术及吸附性能的研究   总被引:6,自引:0,他引:6  
用淀粉糖化酶、α-淀粉酶、普鲁兰酶水解甘薯淀粉制备一种具有吸附功能的微孔淀粉载体。研究表明,淀粉糖化酶对生甘薯淀粉作用力最强;淀粉糖化酶水解制备甘薯微孔淀粉的最佳工艺条件是:温度45℃,pH值4,酶用量为1%,时间24h,水解率为51.52%。微孔淀粉对色素、水溶性维生素、油脂的吸附能力远远高于原淀粉。通过交联反应能明显提高微孔淀粉的结构性能和吸附性能。  相似文献   

8.
碎米蛋白的提取及多孔淀粉的制备   总被引:1,自引:0,他引:1  
陈三宝  周蓉 《安徽农业科学》2007,35(14):4279-4280
碎米蛋白和大米淀粉可以作为碎米综合利用的2个主产品。采用碱法将碎米蛋白和淀粉分离。研究表明:蛋白最适提取条件为碱液质量分数0.3%,提取时间8 h,提取温度为室温,料液比为15∶,蛋白得率67.3%。同时,研究了以碎米淀粉为原料,采用α-淀粉酶水解的处理方法制备多孔淀粉。研究表明多孔淀粉的最佳反应条件为:反应时间8 h,温度50℃,pH 6.0,α-淀粉酶用量1.5%,制备的多孔淀粉具有良好的吸水和吸油性能。  相似文献   

9.
以新鲜脚板薯为主要原料,采用超声波及酸处理粗淀粉制备抗性淀粉,以抗性淀粉得率为评价指标,对影响得率的淀粉乳浓度、盐酸用量、超声温度、超声时间4个主要因素进行正交试验,得出制备抗性淀粉的最佳工艺条件:配制浓度为15%的淀粉乳,加入2 mol/L盐酸,用量为1.5%,在超声温度为80℃、超声时间为40 min条件下进行酸水解,然后用40 g/L Na OH溶液调节溶液pH值至中性,停止酸解,再在120℃下糊化20 min,冷却至3~4℃冷藏20 h,离心,干燥,粉碎过筛。在此工艺条件下,制备的抗性淀粉得率为25.3%。  相似文献   

10.
为了掌握荞麦微孔淀粉的制备条件及吸附性能,在对荞麦生淀粉水解适用酶进行筛选的基础上,系统研究了影响荞麦微孔淀粉吸附性能的主要因素,确定了荞麦微孔淀粉的酶法制备工艺条件。结果表明,真菌α-淀粉酶对荞麦淀粉的酶活力强,与中温α-淀粉酶无明显的协同作用;真菌α-淀粉酶对荞麦淀粉颗粒的致孔率较高,孔径较为一致;在反应温度为40℃、pH6.2、反应时间14 h、真菌α-淀粉酶用量为20 g/kg条件下制备荞麦微孔淀粉,其吸附性能最佳。通过控制反应温度、pH值、反应时间及酶用量,可以制备吸附性能良好的荞麦微孔淀粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号