首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以QuEChERS前处理方法为基础,采用高效液相色谱-串联质谱(HPLC-MS/MS)检测技术,建立了除草剂氟唑磺隆、甲基二磺隆、炔草酯及其代谢物炔草酸4种化合物在小麦中残留的分析方法。麦粒样品中加入5 mL体积分数为0.1%的甲酸水溶液后,以10 mL乙腈提取,用50 mg C18与100 mg 无水硫酸镁净化;麦秆样品中加入10 mL体积分数为2%的甲酸水溶液后,以10 mL乙腈提取,用100 mg C18与200 mg无水硫酸镁净化。结果表明:氟唑磺隆在0.005、0.01和0.1 mg/kg,甲基二磺隆在0.01、0.02和0.1 mg/kg,炔草酯和炔草酸在0.05、0.1和0.5 mg/kg添加水平下,4种化合物在麦粒中的回收率在76%~97%之间,在麦秆中的回收率在83%~102%之间,相对标准偏差均小于10%,r > 0.99。4种化合物在麦粒和麦秆中的定量限分别为:氟唑磺隆0.005 mg/kg,甲基二磺隆0.01 mg/kg,炔草酯和炔草酸均为0.05 mg/kg。该方法可满足小麦样品中4种化合物的残留分析要求。  相似文献   

2.
建立了应用高效液相色谱分别测定炔草酯及其代谢物炔草酸在小麦和土壤中残留量的方法。样品经乙酸乙酯或丙酮提取,中性氧化铝柱层析净化,高效液相色谱法测定。结果表明:炔草酯在小麦籽粒、植株和土壤中的平均回收率为80.4%~92.5%,相对标准偏差(RSD)为1.5%~4.4%;炔草酸的平均回收率为71.7%~83.8%,RSD为2.3%~6.0%;炔草酯和炔草酸的最小检出量分别为1.0×10-9和2.0×10-10 g;在籽粒、植株和土壤中炔草酯和炔草酸的最低检测浓度分别为0.02、0.05、0.02 mg/kg和0.01、0.02、0.01 mg/kg。  相似文献   

3.
在实验室条件下,采用高效液相色谱和高效液相色谱-串联质谱研究了唑啉草酯在不同条件下的水解和光解特性。结果表明:在pH值分别为4.0、7.0和9.0的缓冲溶液中,25 ℃时唑啉草酯的半衰期分别为347、40.8和1.08 h,50 ℃时则分别为57.8、11.6和0.498 h,均为易水解;唑啉草酯在碱性条件下易水解,酸性条件下水解较慢;其水解速率随温度升高而升高,温度效应系数为2.18~6.00。在模拟太阳光氙灯辐射下,唑啉草酯在缓冲溶液中的光解速率随其pH值的升高而加快,在pH值为8.0时最短,为10.0 h;唑啉草酯在自然水体中的光解速率依次为池塘水 > 稻田水 > 河水 > 纯水,4种条件下的半衰期分别为5.17、7.79、8.56和38.5 h。唑啉草酯水解的主要产物是 M2 (8-(2,6-二乙基-4-甲基苯基)-9-羟基-1,2,4,5-四氢吡唑[1,2-d][1,4,5]噁二氮杂卓-7-酮),其降解机理主要是酯水解反应, M2 在光照条件下进一步降解,表明光解为唑啉草酯降解的一个重要途径。研究结果可为唑啉草酯在水体中的环境行为及其环境安全性评价提供参考。  相似文献   

4.
采用田间试验方法研究唑草酮在小麦中的残留动态,建立了气相色谱-串联质谱(GC-MS/MS)测定唑草酮在小麦植株与麦粒上的残留分析方法.唑草酮在小麦植株中的平均回收率为99.4%~102.2%,变异系数为3.0%~6.5%;在麦粒中平均回收率为88.3%~90.6%,变异系数为2.8%~8.9%.动态结果表明:在小麦上使用唑草酮后,利用该方法检测唑草酮在山东和河南两地小麦植株中的残留消解半衰期分别为3.50 d和3.67 d;收获期唑草酮在麦粒中最终残留量均小于0.01 mg/kg.  相似文献   

5.
建立了气相色谱-三重四极杆串联质谱 (GC-MS/MS)检测留兰香、桂皮、薄荷和月桂叶中乙氧氟草醚、唑草酮、乙螨唑残留的分析方法。4种香辛料用超纯水饱和,乙腈提取,无水硫酸镁及氯化钠盐析,氨基/石墨化碳黑 (NH2-Carb) 固相萃取柱净化,多反应监测模式,气相色谱-串联质谱测定。结果表明:乙氧氟草醚在0.002 5~2 mg/L范围内,唑草酮和乙螨唑在0.01~2 mg/L范围内,3种农药的进样质量浓度与对应的峰面积间呈良好的线性关系,r > 0.99;乙氧氟草醚在0.025、0.5和2 mg/kg 3个添加水平下,在4种香辛料中的平均回收率在86%~112%之间,相对标准偏差 (RSD)在2.4%~9.6%之间;唑草酮在0.2、0.5和2 mg/kg 3个添加水平下的平均回收率在87%~114%之间,RSD在2.4%~11%之间;乙螨唑在0.5、2和5 mg/kg 3个添加水平下的平均回收率在86%~116%之间,RSD在3.2%~11%之间。乙氧氟草醚、唑草酮和乙螨唑在4种香辛料中的定量限 (LOQ) 分别为0.025、0.2和0.5 mg/kg。  相似文献   

6.
明确噁唑酰草胺和氰氟草酯在水稻中的残留情况及对人体的膳食摄入风险.建立了噁唑酰草胺和氰氟草酯及其代谢物在糙米、稻壳和秸秆中的残留分析方法.在0.02~0.5mg/kg添加水平下,噁唑酰草胺、氰氟草酯及其代谢物在水稻基质中的平均回收率为83%~112%,相对标准偏差为1%~16%.噁唑酰草胺、氰氟草酯及其代谢物在糙米、稻...  相似文献   

7.
利用高效液相色谱-串联质谱法检测大豆及土壤中喹禾糠酯和代谢物喹禾灵酸的残留及消解动态。样品用盐酸混合液和乙腈提取,石墨炭黑和C18填料净化,高效液相色谱串联质谱法检测,外标法定量。结果表明,喹禾糠酯及代谢物喹禾灵酸在大豆植株、籽粒、毛豆、土壤中的添加平均回收率分别为82.4%~95.3%、90.4%~101.9%,相对标准偏差分别为2.8%~10.3%、2.1%~10.9%。喹禾糠酯及代谢物喹禾灵酸在大豆籽粒上定量限为0.01mg/kg,在大立植株、毛豆和土壤中的定量限为0.005mg/kg;喹禾糠酯及代谢产物喹禾灵总量的消解半衰期在大豆植株上为7.0d,在土壤上为1.7d和2.0d,在毛豆和大豆中的最终残留量分别为<0.005mg/kg和<0.01 mg/kg。  相似文献   

8.
通过1年6地的荔枝田间试验,采用QuEChERS-UPLC-MS/MS方法,研究了吡唑醚菌酯和氰霜唑及其代谢物4-氯-5-(4-甲苯基)-1H-咪唑-2腈(CCIM)在荔枝中的残留量及消解动态,并进行了膳食风险评估。结果表明,当吡唑醚菌酯添加水平在0.01~1.0 mg/kg时,方法平均回收率分别在73%~101%之间,相对标准偏差<4.5%;当氰霜唑及代谢物CCIM添加水平在0.01~0.5 mg/kg添加水平下,方法平均回收率分别在79%~103%和81%~90%之间,相对标准偏差<12.8%。吡唑醚菌酯、氰霜唑和CCIM在荔枝全果和果肉中的定量限均为0.01 mg/kg。吡唑醚菌酯在广东、广西和海南3地荔枝中的半衰期分别为6.9 d, 5.2 d和8.0 d;氰霜唑在广东和广西2地荔枝中的半衰期分别为5.0 d和6.7 d。于安全间隔期(21 d)时采收的荔枝样品中,吡唑醚菌酯和氰霜唑的最终残留量均低于我国相应的MRL值(0.1 mg/kg和0.02 mg/kg)。经膳食风险评估可知,吡唑醚菌酯和氰霜唑的摄入风险概率均<100%,不会对一般人群健康产生不可接受的...  相似文献   

9.
本文旨在建立利用超高效液相色谱-串联质谱(Ultra Performance Liquid Chromatogra‐phy Tandem Mass Spectrometry,UPLC-MS/MS)同时测定糙米、稻壳和秸秆样品中的氟酮磺草胺及其代谢物BCS AA10030和BCS-CS64946。样品经乙腈水溶液振荡提取,PSA、C18或GCB净化,UPLC-MS/MS测定,外标法定量。氟酮磺草胺、BCS AA10030和BCS-CS64946在0.001~0.5 mg/L范围内线性关系较好,相关系数>0.997 0,检出限均为0.01 mg/kg,在0.01、0.05、0.1三个添加水平下,氟酮磺草胺及其代谢物BCS AA10030和BCS-CS64946在糙米、稻壳和秸秆中平均回收率均分别为88.4%~103.0%,相对标准偏差分别为0.9%~9.3%,3种化合物在糙米、稻壳和秸秆中的定量限均为0.01 mg/kg,。该方法能够满足水稻中氟酮磺草胺及其代谢物残留分析要求,适用于大量水稻样品中氟酮磺草胺及其代谢物的快速检测,为政府监管提供有效的检测分析手段。  相似文献   

10.
采用气相色谱法建立了水果中氟吡菌酰胺、肟菌酯及其代谢物肟菌酸残留的分析方法。样品用乙腈匀浆提取,氯化钠和无水硫酸镁盐析后,经N-丙基乙二胺(PSA)分散固相萃取净化,气相色谱-电子捕获检测器(GC-ECD)检测。结果表明:在0.05~1 mg/kg添加水平下,氟吡菌酰胺、肟菌酯及其代谢物肟菌酸的平均回收率为79%~120%,相对标准偏差(RSD)为0.7%~16%。氟吡菌酰胺、肟菌酯及其代谢物肟菌酸在不同水果样品中的检出限(LOD)分别为0.01、0.015和0.01 mg/kg,定量限(LOQ)均为0.05 mg/kg。该方法快速、简单和稳定,可以满足水果中氟吡菌酰胺、肟菌酯及其代谢物肟菌酸残留量的检测要求。  相似文献   

11.
建立了小麦及其秸秆中联苯菊酯、噻虫嗪和代谢物噻虫胺残留量的分析方法.样品经乙酸-乙腈提取,无水硫酸镁、N-丙基乙二胺(PSA)及GCB净化,超高效液相色谱-三重四极杆串联质谱仪(UPLC-MS/MS)检测.结果表明:在0.0025~0.1 mg/L范围内,联苯菊酯、噻虫嗪和噻虫胺的峰面积与其质量浓度间呈良好线性关系,R...  相似文献   

12.
本研究建立了超高效液相色谱-串联质谱法(UHPLC-MS/MS)同时测定异丙隆及其代谢物脱甲基异丙隆在大米、小麦、牛肉、牛奶、鸡肉和鸡蛋的残留检测方法。样品经2%甲酸乙腈提取,以N-丙基乙二胺(PSA)净化,利用乙腈和0.2%甲酸水作为流动相梯度洗脱,T3色谱柱分离,在多反应监测模式下定量分析,基质外标法定量。结果表明:异丙隆及其代谢物脱甲基异丙隆溶剂标准曲线和基质标准曲线在1~1 000μg/L范围内线性关系良好,相关系数均大于0.99。在4个加标水平下,异丙隆日内平均回收率为74.0%~107.0%,相对标准偏差0.7%~12.9%;日间平均回收率为76.2%~108.7%,相对标准偏差1.1%~19.8%。脱甲基异丙隆日内平均回收率为76.9%~113.5%,相对标准偏差0.6%~13.9%;日间平均回收率为77.7%~107.4%,相对标准偏差2.2%~17.4%。异丙隆和脱甲基异丙隆的定量限均为1.0μg/kg。该方法简便、快捷、准确、灵敏度高,适用于异丙隆和脱甲基异丙隆在大米、小麦、牛肉、牛奶、鸡肉和鸡蛋6种基质中残留的检测,为解决异丙隆和脱甲基异丙隆在食品中残留的安全问题提供技术方法。  相似文献   

13.
叶菌唑在小麦中的残留消解及膳食风险评价   总被引:4,自引:2,他引:2  
为评价叶菌唑在小麦中的残留行为及其产生的膳食摄入风险,于北京、安徽及黑龙江进行了1年3地田间试验,建立了叶菌唑在小麦中的残留分析方法,并对我国不同人群的膳食暴露风险进行了评价。样品用乙腈提取,经Florisil固相萃取柱净化,气相色谱-氮磷检测器(GC-NPD)检测,外标法定量。结果表明:在0.02~10 mg/kg的添加水平下,叶菌唑在小麦籽粒和植株中的平均回收率在81%~101%之间,相对标准偏差(RSD)在2.1%~9.1%之间;其在小麦籽粒和植株中的定量限(LOQ)分别为0.02和0.04 mg/kg。叶菌唑在小麦植株中的消解符合一级动力学方程,半衰期为4.9~7.3 d。收获时小麦籽粒中叶菌唑的最大残留量为0.037 mg/kg,低于美国和欧盟设定的最大残留限量(MRL)0.15 mg/kg。针对我国不同人群的膳食摄入及风险评估暴露,风险商值(RQ)在0.001~0.002之间,表明叶菌唑在小麦中的膳食摄入风险较低。  相似文献   

14.
建立了同时检测蔬菜水果中百菌清及其代谢物4-羟基百菌清的高效液相色谱-串联质谱分析方法.样品经酸化乙腈提取后,采用配备大气压化学电离源的三重四极杆串联质谱仪测定.结果表明:百菌清及其代谢物4-羟基百菌清在0.005~0.2 mg/L范围内峰面积与质量浓度的线性关系良好,决定系数(R2)大于0.99;方法定量限为0.01...  相似文献   

15.
建立了高效液相色谱-串联质谱检测糙米、稻壳和秸秆中氯吡嘧磺隆残留的分析方法。样品经乙腈和水提取,C 18吸附剂净化,多反应监测模式检测,外标法定量。结果表明,在0.01~2mg/L范围内,氯吡嘧磺隆的质量浓度与对应的峰面积间呈良好的线性关系,其相关系数为0.9997。在0.01~0.5mg/kg添加水平下,氯吡嘧磺隆在糙米中的平均回收率为95%~98%,相对标准偏差(RSD)为2%~4%。在0.05~5mg/kg添加水平下,氯吡嘧磺隆在稻壳和秸秆中的平均回收率为78%~87%,相对标准偏差(RSD)为1%~5%。氯吡嘧磺隆在糙米中的定量限(LOQ)为0.01mg/kg,在稻壳和秸秆中的定量限(LOQ)为0.05mg/kg。该方法简便、快速、准确。  相似文献   

16.
为了评价氟环唑在小麦生产上使用的残留安全性,建立了气相色谱-电子捕获检测器检测氟环唑在小麦植株、小麦籽粒及土壤中残留的分析方法,并对氟环唑在小麦植株、小麦籽粒和土壤中的最终残留量及小麦植株和土壤中的消解动态进行了研究。结果表明:在添加水平为0.01、0.1和2 mg/kg(小麦籽粒和土壤)和0.01、0.1和10 mg/kg(小麦植株)下,氟环唑的回收率为82%~93%,相对标准偏差为3.0%~9.7%。氟环唑在小麦植株、小麦籽粒和土壤中的定量限均为0.01 mg/kg。氟环唑在小麦植株和土壤中的消解半衰期分别为3.5~8.4和10~30 d。当以有效成分112.5 g/hm2的剂量施药2次、采收间隔期为21 d时,小麦籽粒中氟环唑的残留量为<0.05 mg/kg,低于中国制定的小麦中氟环唑的最大残留限量值(0.05 mg/kg)。建议氟环唑在小麦上使用时最大剂量为有效成分112.5 g/hm2,施药2次,安全间隔期为21 d。  相似文献   

17.
研究异丙隆在水稻、土壤、田水中的残留分析方法及其消解动态和最终残留量。样品以丙酮提取、净化后采用气相色谱法-氮磷检测器(GC—NPD)毛细管柱进行测定。水田添加0.005、1.00mg/kg,土壤、水稻添加0.05、1.00mg/kg,添加回收率在77.9%-118.4%之间,变异系数为2.1%~11.2%。异丙隆在田水、土壤的消解动态没有明显差异,平均半衰期分别为413、5-3d,在稻秆中消解较慢,平均半衰期为8.3d。异丙隆24%可湿性粉剂,按900ga.i./hm^2用量,在直播水稻田水稻播种后施药1次,收获时异丙隆在土壤、稻杆和稻谷中的残留量均低于0.05mg/kg。  相似文献   

18.
为分析50%噻虫嗪水分散粒剂在枸杞上的残留情况, 评估其残留量对人体的膳食摄入风险, 建立了噻虫嗪及其代谢物噻虫胺在枸杞上的高效液相色谱-串联质谱检测方法, 分析枸杞中农药的最终残留量, 估算农药慢性摄入风险。结果表明, 在0.01~1.0 mg/L的范围内, 2种农药的线性关系良好, 相关系数大于0.999。在0.01、0.1、1.0 mg/kg 3个添加水平下, 平均回收率为80.7%~106.6%, 相对标准偏差为1.4%~4.6%。储藏稳定性试验结果表明, 冷冻条件下储藏11个月, 噻虫嗪和噻虫胺在枸杞中均稳定。中国居民摄入噻虫嗪和噻虫胺的慢性暴露风险分别为16.6%和3.8%, 远低于100%, 慢性膳食暴露风险低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号