首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
针对传统机器视觉技术对淡水鱼种类进行检测时特征提取过程复杂的问题,该研究提出了基于特征点检测的淡水鱼种类识别方法。以鳊、鳙、草鱼、鲢、鲤5种大宗淡水鱼为对象,构建了淡水鱼特征点检测数据集;以AlexNet模型为基础,通过减小卷积核尺寸、去除局部响应归一化、引入批量归一化、更换损失函数,构建了改进AlexNet模型用于特征点检测;并以特征点为依据提取特征值、构造特征向量,使用Fisher判别分析方法实现了淡水鱼的种类识别。试验结果表明:改进AlexNet模型在测试集上的归一化平均误差的均值为0.0099,阈值δ为0.02和0.03时的失败率F0.02F0.03分别为2.50%和0.83%,具有较好的精准度和误差分布情况;基于该模型和Fisher判别分析的淡水鱼种类识别方法对5种淡水鱼的识别准确率为98.0%,单幅图像的平均识别时间为0.368 s,保证了时效性。由此可知,提出的改进AlexNet模型能实现淡水鱼的特征点检测并具有较高的精度,可为淡水鱼种类识别、尺寸检测、鱼体分割等提供条件,该方法可为淡水鱼自动化分类装置的研发奠定基础。  相似文献   

2.
及时准确地识别出养殖区域内的粘连鱼体是实现水产养殖中鱼群计数、养殖密度估算等多种基本养殖操作自动化的关键技术。针对目前粘连鱼体识别方法存在准确率低、普适性差等问题,该研究提出了一种基于深度可分离卷积网络的粘连鱼体识别方法。首先采集鱼群图像数据,采用图像处理技术分割出鱼体连通区域图像,构建粘连鱼体识别数据集;其次构建基于深度可分离卷积网络的粘连鱼体识别模型,采用迁移学习方法训练模型;最后基于训练好的模型实现粘连鱼体的识别。在真实的鱼体图像数据集上进行测试,识别准确率达到99.32%。与基于支持向量机(Support Vector Machine, SVM)和基于反向传递神经网络(Back Propagation Neural Network, BPNN)的机器学习方法相比,准确率分别提高了5.46个百分点和32.29个百分点,具有更好的识别性能,可为实现水产养殖自动化、智能化提供支持。  相似文献   

3.
改进ResNet18网络模型的羊肉部位分类与移动端应用   总被引:1,自引:1,他引:0  
针对传统图像分类模型泛化性不强、准确率不高以及耗时等问题,该研究构建了一种用于识别不同部位羊肉的改进ResNet18网络模型,并基于智能手机开发了一款可快速识别不同部位羊肉的应用软件。首先,使用数据增强方式对采集到的羊背脊、羊前腿和羊后腿肉的原始手机图像进行数据扩充;其次,在ResNet18网络结构中引入附加角裕度损失函数(ArcFace)作为特征优化层参与训练,通过优化类别的特征以增强不同部位羊肉之间的类内紧度和类间差异,同时将ResNet18网络残差结构中的传统卷积用深度可分离卷积替换以减少网络参数量,提高网络运行速度;再次,探究了不同优化器、学习率和权重衰减系数对网络收敛速度和准确率的影响并确定模型参数;最后,将该网络模型移植到安卓(Android)手机以实现不同部位羊肉的移动端检测。研究结果表明,改进ResNet18网络模型测试集的准确率高达97.92%,相比ResNet18网络模型提高了5.92个百分点;把改进ResNet18网络模型部署到移动端后,每张图片的检测时间约为0.3 s。该研究利用改进ResNet18网络模型结合智能手机图像实现了不同部位羊肉的移动端快速准确分类,为促进羊肉的智能化检测及羊肉市场按质论价提供了技术支持。  相似文献   

4.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

5.
基于蜂群优化多核支持向量机的淡水鱼种类识别   总被引:12,自引:10,他引:2  
为了准确地进行淡水鱼种类自动识别,利用计算机视觉技术,提出了一种基于Krawtchouk矩、灰度共生矩阵、蜂群优化多核最小二乘支持向量机(least squares support vector machine,LS-SVM)的识别方法。首先获取淡水鱼样本的灰度图像,计算淡水鱼鱼体的长宽比、鱼头鱼尾的Krawtchouk矩不变量形状特征,求得鱼身的灰度共生矩阵纹理特征,将上述形状与纹理特征组合成高维特征向量,并输入到多核LS-SVM,通过人工蜂群(artificial bee colony,ABC)算法对多核LS-SVM中的待定参数进行寻优,ABC算法中的适应度函数为测试样本的识别精度;最后输出识别精度达到最高时的最优参数。利用该方法对鳊鱼、鳙鱼、鲫鱼、草鱼、青鱼5种淡水鱼进行了分类识别,对鳊鱼、鳙鱼、鲫鱼、草鱼4种鱼识别时,各类鱼的识别精度均达到95.83%以上,对鳊鱼、鳙鱼、鲫鱼、青鱼4种鱼识别时,各类鱼的识别精度均达到91.67%以上,对鳊鱼、鳙鱼、鲫鱼、草鱼和青鱼 5种鱼识别时,各类鱼的识别精度均达到83.33%以上;与近年来提出的淡水鱼识别方法、BP(back propagation)神经网络方法、单核LS-SVM方法相比,该方法的识别精度更高,从而可快速准确地识别淡水鱼的种类,提高水产养殖的自动化水平。  相似文献   

6.
针对人工分拣柑橘过程中,检测表面缺陷费时费力的问题,该文提出了一种基于改进SSD深度学习模型的柑橘实时分类检测方法。在经改装的自制打蜡机试验台架下采集单幅图像含有多类多个柑橘的样本2 500张,随机选取其中2 000张为训练集,500张为测试集,在数据集中共有正常柑橘19 507个,表皮病变柑橘9 097个,机械损伤柑橘4 327个。该方法通过单阶段检测模型SSD-ResNet18对图片进行计算和预测,并返回图中柑橘的位置与类别,以此实现柑橘的分类检测。以平均精度AP(average precision)的均值m AP(mean average precision)作为精度指标,平均检测时间作为速度指标,在使用不同特征图、不同分辨率和ResNet18、MobileNetV3、ESPNetV2、VoVNet39等4种不同特征提取网络时,进行模型分类检测效果对比试验研究。研究表明,该模型使用C4、C5特征图,768×768像素的分辨率较为合适,特征提取网络ResNet18在检测速度上存在明显优势,最终该模型的m AP达到87.89%,比原SSD的87.55%高出0.34个百分点,平均检测时间为20.27 ms,相较于原SSD的108.83 ms,检测耗时降低了436.90%。该模型可以同时对多类多个柑橘进行实时分类检测,可为自动化生产线上分拣表面缺陷柑橘的识别方面提供技术借鉴。  相似文献   

7.
针对目前在茶园垄间导航路径识别存在准确性不高、实时性差和模型解释困难等问题,该研究在Unet模型的基础上进行优化,提出融合Unet和ResNet模型优势的Unet-ResNet34模型,并以该模型所提取的导航路径为基础,生成路径中点,通过多段三次B样条曲线法拟合中点生成茶园垄间导航线。该研究在数据增强后的茶园垄间道路训练集中完成模型训练,将训练完成的模型在验证集进行导航路径识别,根据梯度加权类激活映射法解释模型识别过程,可视化对比不同模型识别结果。Unet-ResNet34模型在不同光照和杂草条件下导航路径分割精度指标平均交并比为91.89%,能够实现茶园垄间道路像素级分割。模型处理RGB图像的推理速度为36.8 帧/s,满足导航路径分割的实时性需求。经过导航线偏差试验可知,平均像素偏差为8.2像素,平均距离偏差为0.022 m,已知茶园垄间道路平均宽度为1 m,道路平均距离偏差占比2.2%。茶园履带车行驶速度在0~1 m/s之间,单幅茶垄图像平均处理时间为0.179 s。研究结果能够为茶园视觉导航设备提供技术和理论基础。  相似文献   

8.
基于姿态与时序特征的猪只行为识别方法   总被引:3,自引:1,他引:2  
生猪行为监测是生猪养殖管理过程中的一个重要环节。该研究提出了基于姿态与时序特征的猪只行为识别方法。首先采集和标注猪栏内猪只图像,分别构建了猪只目标检测数据集、猪只关键点数据集和猪只行为识别数据集;利用构建的数据集,分别训练了基于YOLOv5s的猪只检测模型、基于轻量化OpenPose算法的猪只姿态估计模型和基于ST-GCN算法的猪只行为识别模型,并搭建了猪只行为识别系统。经测试,文中训练的YOLOv5s猪只检测模型mAP(mean Average Precision)最高达到0.995,姿态估计模型平均精度和平均召回率达到93%以上,基于ST-GCN的猪只行为识别模型的平均准确率为86.67%。文中构建的猪只行为识别系统中基于LibTorch推理猪只检测模型和猪只姿态估计模型的单帧推理耗时分别约为14和65 ms,单只猪行为识别推理耗时约为8 ms,每提取200帧连续姿态进行一次行为识别推理,平均17 s更新一次行为识别结果。证明提出的基于姿态与时序特征的猪只行为识别方法具有一定可行性,为群养猪场景下的猪只行为识别提供了思路。  相似文献   

9.
在集约化水产养殖过程中,饲料投喂是控制养殖成本,提高养殖效率的关键。室外环境复杂多变且难以控制,适用于此环境的移动设备计算能力较弱,通过识别鱼类摄食状态实现智能投喂仍存在困难。针对此种现象,该研究选取了轻量级神经网络MobileNetV3-Small对鲈鱼摄食状态进行分类。通过水上摄像机采集水面鲈鱼进食图像,根据鲈鱼进食规律选取每轮投喂后第80~110秒的图片建立数据集,经训练后的MobileNetV3-Small网络模型在测试集的准确率达到99.60%,召回率为99.40%,精准率为99.80%,F1分数为99.60%。通过与ResNet-18, ShuffleNetV2和MobileNetV3-Large深度学习模型相比,MobileNetV3-Small模型的计算量最小为582 M,平均分类速率最大为39.21帧/s。与传统机器学习模型KNN(K-Nearest Neighbors)、SVM(Support Vector Machine)、GBDT(Gradient Boosting Decision Tree)和Stacking相比,MobileNetV3-Small模型的综合准确率高出12.74、23.85、3.60和2.78个百分点。为进一步验证该模型有效性,在室外真实养殖环境进行投喂试验。结果显示,与人工投喂相比,基于该分类模型决策的鲈鱼投喂方式的饵料系数为1.42,质量增加率为5.56%。在室外真实养殖环境下,MobileNetV3-Small模型对鲈鱼摄食状态有较好的分类效果,基于该分类模型决策的鲈鱼投喂方式在一定程度上能够代替养殖人员进行决策,为室外集约化养殖环境下的高效智能投喂提供了参考。  相似文献   

10.
基于改进YOLOv4-Tiny的蓝莓成熟度识别方法   总被引:1,自引:2,他引:1  
为实现自然环境下蓝莓果实成熟度的精确快速识别,该研究对YOLOv4-Tiny网络结构进行改进,提出一种含有注意力模块的目标检测网络(I-YOLOv4-Tiny)。该检测网络采用CSPDarknet53-Tiny网络模型作为主干网络,将卷积注意力模块(Convolution Block Attention Module,CBAM)加入到YOLOv4-Tiny网络结构的特征金字塔(Feature Pyramid Network,FPN)中,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性,加强网络结构深层信息的传递,从而降低复杂背景对目标识别的干扰,且该检测网络的网络层数较少,占用内存低,以此提升蓝莓果实检测的精度与速度。对该研究识别方法进行性能评估与对比试验的结果表明,经过训练的I-YOLOv4-Tiny目标检测网络在验证集下的平均精度达到97.30%,能有效地利用自然环境中的彩色图像识别蓝莓果实并检测果实成熟度。对比YOLOv4-Tiny、YOLOv4、SSD-MobileNet、Faster R-CNN目标检测网络,该研究在遮挡与光照不均等复杂场景中,平均精度能达到96.24%。平均检测时间为5.723 ms,可以同时满足蓝莓果实识别精度与速度的需求。I-YOLOv4-Tiny网络结构占用内存仅为24.20 M,为采摘机器人与早期产量预估提供快速精准的目标识别指导。  相似文献   

11.
改进Multi-scale ResNet的蔬菜叶部病害识别   总被引:9,自引:8,他引:1  
基于深度网络的蔬菜叶部病害图像识别模型虽然性能显著,但由于存在参数量巨大、训练时间长、存储成本与计算成本过高等问题,仍然难以部署到农业物联网的边缘计算设备、嵌入式设备、移动设备等硬件资源受限的领域。该研究在残差网络(ResNet18)的基础上,提出了改进型的多尺度残差(Multi-scale ResNet)轻量级病害识别模型,通过增加多尺度特征提取模块,改变残差层连接方式,将大卷积核分解,进行群卷积操作,显著减少了模型参数、降低了存储空间和运算开销。结果表明,在PlantVillage和AI Challenge2018中15种病害图像数据集中取得了95.95%的准确率,在自采集的7种真实环境病害图像数据中取得了93.05%的准确率,在准确率较ResNet18下降约3%的情况下,模型的训练参数减少93%,模型总体尺寸缩减35.15%。该研究提出的改进型Multi-scale ResNet使蔬菜叶部病害识别模型具备了在硬件受限的场景下部署和运行的能力,平衡了模型的复杂度和识别精度,为基于深度网络模型的病害识别系统进行边缘部署提供了思路。  相似文献   

12.
为提高橙果采摘定位精度和作业速度,提出一种便于迁移至移动终端的改进YOLOv4模型,可从RealSense深度相机所成彩色图像中获取果实质心二维坐标,经配准提取对应深度图中质心点深度值,实现果实的三维空间定位。改进YOLOv4模型以MobileNet v2为主干网络,在颈部结构中使用深度可分离卷积替换普通卷积,实现模型轻量化并提高检测速度。训练后的改进模型对513张独立橙果测试集数据的识别平均精度达97.24%,与原始YOLOv4模型相比,平均检测时间减少11.39 ms,模型大小减少197.5 M。与经典Faster RCNN、SSD模型相比,检测平均精度分别提高了2.69和3.11个百分点,模型大小分别减少了474.5和44.1 M。与轻量化模型YOLOv4-tiny相比,召回率提升了4.22个百分点,较Ghostnet-YOLOv4,平均检测时间减少了7.15 ms。为验证该改进算法实用性,应用改进模型获取果园中78个橙果的位置信息,结果表明:果实二维识别成功率达98.72%,水平方向及垂直方向的平均绝对百分比误差均在1%以内。果实三维定位成功率达96.15%,深度信息平均绝对百分比误差为2.72%,满足采摘机械手精准定位需求。该方法为复杂场景下采摘作业实现提供了鲁棒性强、实时性好、精准度高的目标定位途径。  相似文献   

13.
针对传统鱼眼瞳孔直径测量方法耗时、耗力,且数据主观性强的问题,该文提出基于权重约束AdaBoost和改进Hough圆变换的鱼眼瞳孔直径智能测量方法。首先,利用工业相机采集实验板上的鱼图像,从正负鱼眼图像样本中训练出基于权重约束AdaBoost算法的鱼眼分类器;然后,采用该分类器对试验图像进行检测,将检测到的鱼眼局部图从整体图中分离出来;最后,采用改进的Hough圆变换检测出鱼眼的瞳孔,并计算得到瞳孔直径。对100条金鲳鱼进行试验,鱼眼分类精度达97.1%,瞳孔正确检测率达94.2%,相比改进前分别提升了1.7个百分点和10.5个百分点,与人工测量瞳孔直径值的平均偏差为6.5%,比改进前低了5.9个百分点,总的平均测量时间为324.371 ms,比改进前减少了10.707 ms。试验证明:该文提出的方法能够精确、实时、自动地测量出鱼眼瞳孔的直径,有效避免了传统测量方式的复杂性和测量数据的主观性,可为鱼体生长状况评估、良种选育提供重要参考。  相似文献   

14.
田间道路改进UNet分割方法   总被引:1,自引:1,他引:0  
为了保证自动驾驶农机的安全行驶,需要对农田间道路进行高精度识别.该研究以北京市大兴区榆垡镇为研究地点,构建了农田间道路图像数据集,使用开源标注工具Labelme软件进行图像标注,以UNet为基本网络结构,针对分割过程中存在的道路边缘和远处道路分割效果较差等现象,提出了3个改进方向:在编码器网络中添加残差连接,增加网络复...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号