首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
BACKGROUND: House fly control in livestock‐rearing facilities is heavily reliant on the use of the larvicide cyromazine. While extensive use of this compound has led to the development of resistance in several countries, no elevated tolerance has so far been reported from the United Kingdom. RESULTS: Tolerance to cyromazine in larvae derived from a field strain collected at an intensive pig unit was significantly elevated over that of insects taken from a susceptible laboratory strain. Resistance factors (RFs) of 2.9 and 2.4 were returned for assays initiated with eggs and neonate larvae respectively. The RF for field strain larvae exposed from neonate increased significantly to 3.9 and 5.6 following rounds of selection at 1.0 and then 1.5 mg kg?1 cyromazine. CONCLUSION: Low‐level resistance to cyromazine in UK house flies is reported here for the first time. The geographic extent of this resistance is unknown but, if widespread, may lead to control failures in the future, and indicates that careful stewardship of this compound in the United Kingdom is now required. © Crown copyright 2010. Reproduced with permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

2.
家蝇生境中充满病原菌,其有效的防防机制成为研究的热点。通过三氟乙酸缓冲液浸提、热处理、固相萃取以及两次RP-HPLC等方法,从混合细菌液诱导的家蝇蛹中分离纯化出4种具有抗菌活性的物质。结果表明,提取的家蝇蛹粗提液抗菌谱较广,对多种微生物具有不同程度的抗菌作用,且抗菌效果好于天然肽类防腐剂和一些化学防腐保鲜剂。4种抗菌物质中包括3个抗菌肽和1个抗菌化合物。Tricine-SDS-PAGE结果显示3个抗菌肽的分子量分别约为12kDa、8kDa和4kDa。本研究表明细菌诱导家蝇蛹中具有丰富的抗菌物质。  相似文献   

3.
Glutathione S-transferases from two strains of house fly have been prepared in a high degree of homogeneity by a procedure involving affinity chromatography and isoelectrofocusing. They fall into two groups in each strain. One group, of isoelectric point greater than pH 6.5, catalyzes the glutathione-dependent degradation of lindane, diazinon and methyl parathion. The other group, of low isoelectric point, has conjugating activity with the model substrate CDNB, but very little activity with the insecticide substrates. In the Cornell R strain the three isoenzyme forms in the high pI group appear to be almost identical in their substrate specificities. In the A strain, it is apparent that the enzyme forms falling into this group vary markedly in substrate specificity. The dehydrochlorination of DDT paralleled very closely the conjugation of the other insecticides catalyzed by the three high pI enzymes in the Cornell R strain. In the A strain, DDT dehydrochlorinase was most strongly associated with a glutathione S-transferase isoelectric at pH 7.1. It is tentatively concluded that multiple genes are involved in the production of the glutathione S-transferases involved in pesticide metabolism in the house fly and that DDT dehydrochlorinase may be derived from some, but not all, of these same genes.  相似文献   

4.
The onset of symptoms of toxicity in houseflies treated with poisons of the central nervous system (CNS) is shown to be delayed by measures which block metabolic activity such as depriving the insects of oxygen or decreasing the temperature. The indications from this work are that these measures also delay the penetration of the insecticide into the CNS. This suggests that the movement of the insecticide is mediated by a process which requires the expenditure of metabolic energy in a living tissue. The tissue most likely to be involved in insecticide transport is the epidermis.  相似文献   

5.
Of six juvenile hormone analogs of the alkyl 3,7,11-trimethyl-2,4-dodecadienate type, only the isopropyl ester was strongly morphogenic in the house fly, Musca domestica L. In vitro assays revealed that house fly microsomes contain B-esterases as well as oxidases which metabolize such analogs. However, these esterases did not hydrolyze the isopropyl ester, ZR-515. Enzymes prepared from larvae, pupae, and adults were all active and there was evidence that in the late larval stage the esterase activity was cyclic, showing a minimum in the early third instar and a maximum a few hours later. When microsomes from two susceptible and two resistant house fly strains were compared for metabolic activity against the juvenile hormone analogs, those from the resistant strains were 1.3 to 20 × higher in oxidase activity but there was no difference in esterase activity. The oxidative metabolism of two analogs ZR-515 and 512 was greatly enhanced when the flies were induced with phenobarbital but there was no enhancement in metabolism of three of the remaining analogs and only a slight enhancement of a fourth. It is concluded that the insecticidal action of ZR-515 is largely due to its stability in the presence of the house fly esterases.  相似文献   

6.
The insecticidal properties of 1-(7-ethoxygeranyl)-2-methylbenzimidazole (EGMB) were investigated on larval and adult house flies. Unsynergised EGMB gave topical LD50 values of 0.53 μg per female fly on NAIDM strain house flies. When flies were pretreated with 5.2 μg piperonyl butoxide, susceptibility was increased (LD50 0.12 μg per female fly). House fly larvae were less susceptible to EGMB (LD50 2.2 μg). Poisoning with EGMB resulted in a rapid reduction in locomotor activity of both larval and adult house flies. This reduction in locomotion was progressive and led to complete paralysis. Various parameters of larval nervous system function were investigated in larvae during these early phases of poisoning. As early as 15 min after dosing larvae with LD95 doses of EGMB, sensory nerves were less responsive. Over a somewhat longer time (2–4 h), neurally evoked contractures were adversely affected by EGMB. In some cases, this effect appeared to be due to reduced postsynaptic potential amplitude; in other instances, it appeared to be due to an effect independent of neuromuscular transmission. The close temporal correlation between behavioural and electrophysiological observations suggests that the nervous and muscular systems are important sites of action of EGMB.  相似文献   

7.
8.
9.
10.
Genetic studies of glutathione-dependent reactions were conducted with a diazinon-resistant house fly strain in which resistance is controlled primarily by genes on chromsome II. The resistant strain was crossed with a susceptible strain which had mutant markers on chromosomes II, III, and V, and the F1 was backcrossed to the susceptible strain. Glutathione transferase activities of the resultant eight phenotypes were measured using 3,4-dichloronitrobenzene, methyl iodide, and γ-benzene hexachloride as substrates. High levels of all these activities are controlled by gene(s) on chromosome II. Further analysis was made by introducing diazinon resistance into a susceptible strain via genetic crossing-over. Intermediate activity levels for 3,4-dichloronitrobenzene and methyl iodide conjugations were introduced along with intermediate levels of resistance. Assays of individual flies of the synthesized strain revealed they were heterogeneous for glutathione-dependent activities, consisting of individuals with low, intermediate, and high transferase activity. Based on these results, high levels of the glutathione-dependent enzymes are not a major biochemical mechanism responsible for diazinon resistance. It was also demonstrated that glutathione S-aryltransferase and S-alkyltransferase in the house fly, as measured with 3,4-dichloronitrobenzene and methyl iodide, are inseparable genetically and may, therefore, be the same enzyme.  相似文献   

11.
12.
BACKGROUND: Intensive livestock units frequently produce flies in large numbers that, on migration, cause nuisance to the occupants of neighbouring dwellings. The resolution of such problems is often reliant on the unequivocal identification of the origin of the flies, particularly when several potential sources exist. This study evaluated stable isotope analysis as a method for differentiating adult houseflies (Musca domestica) on the basis of their dietary history so as to determine their likely source. RESULTS: Flies were reared in the laboratory on several substrates, including chicken and cattle manure, laboratory diet and household vegetable waste. Different fly parts (wings, heads and legs) and whole flies were analysed immediately after eclosion and after 10 days. The δ13C and δ15N values for adults that had developed on each diet type were highly distinct. Both isotopic ratios altered markedly after maintaining the flies for 10 days on a diet of cane sugar solution. CONCLUSIONS: Stable isotope analysis readily differentiated flies that had developed on a range of substrates. The technique, therefore, shows potential to be employed to determine the likely source of various nuisance insects, and to contribute to the abatement of such problems. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Twenty-seven insecticides, including organochlorine, organophosphorus compounds and carbamates were tried for potentiation of the toxic effect of malathion. Carbaryl, diazinon, fenthion, gamma-BHC, parathion and tetrachlorvinphos potentiated the action of malathion. Fourteen insecticides gave additive effects while seven proved antagonistic. Insecticides which showed potentiation, were further tested by mixing with malathion in the ratios of 1:9, 3:7, 5:5, 7:3 and 9:1. All the five combinations in the six mixtures gave potentiating effects. Maximum potentiation of 17.6 times was observed in 1:9 combination of malathion and gamma-BHC. The proportions in which the insecticides were mixed had a pronounced effect on the toxic effect of malathion.  相似文献   

14.
15.
Fipronil is a new insecticide which exerts its toxic action by interacting with the insect GABA-gated chloride channel. Previous studies have shown that cyclodiene-resistant insects have low to moderate levels of cross-resistance to fipronil, while other resistant strains are usually susceptible. In contrast, we recently found a strain (LPR) of house fly (Musca domestica L) with 15-fold cross-resistance to fipronil that was not associated with cyclodiene resistance. Fipronil cross-resistance in LPR was inherited as an intermediately dominant, autosomal, multigenic trait. [14C]Fipronil was observed to penetrate into LPR flies more slowly than into susceptible flies. S,S,S-tributylphosphorotrithioate and diethyl maleate pretreatment did not reduce the level of fipronil cross-resistance, while piperonyl butoxide resulted in a slight decrease. These results indicate that decreased penetration and monooxygenase-mediated detoxification may be mechanisms contributing to fipronil cross-resistance in the LPR strain. © 1999 Society of Chemical Industry  相似文献   

16.
Deltamethrin perfused onto dissected last instar larvae of house fly, Musca domestica, at micromolar concentrations caused a blockage of synaptic transmission from excitatory axons to intersegmental muscles within 1 hr. Ultrastructure of the intersegmental muscles in treated preparations was indistinguishable from the appearance of untreated muscles. The presynaptic nerve terminals of treated larvae showed a general lack of synpatic vesicles in marked contrast to abundant synaptic vesicles in untreated tissues. Mitochondria of treated terminals showed swelling and vacuolated interiors whereas muscle mitochondria were normal in appearance. Neurosecretory terminals were similar in appearance between control and treated. The synaptic vesicle depletion reflected a presynaptic action of deltamethrin on house fly larvae motor nerve terminals as previously indicated by intracellular recordings.  相似文献   

17.
BACKGROUND: Spinosad, a relatively new, effective and safe pesticide, has been widely used in pest control over the last 10 years. However, different levels of resistance to this insecticide have developed in some insects worldwide. RESULTS: After continuous selection for 27 generations, a strain (SpRR) of the housefly developed 247‐fold resistance to spinosad compared with the laboratory susceptible strain (CSS). The estimated realised heritability (h2) of spinosad resistance was 0.14. There was no significant difference in the LD50 values and slopes between reciprocal progenies F1 and F1′, and values of 0.33 (F1) and 0.30 (F1′) were obtained for the degree of dominance. Chi‐square analysis from responses of self‐bred (F2) and backcrosses (BC1 and BC2) were highly significant, suggesting that the resistance was probably controlled by more than one gene. Synergists piperonyl butoxide (PBO), diethyl maleate (DEM) and S,S,S‐tributyl phosphorotrithioate (DEF) affected the toxicity of spinosad at a low level, and demonstrated that metabolic‐mediated detoxification was not an important factor in conferring resistance to spinosad in the SpRR strain. CONCLUSION: It was concluded that spinosad resistance in the housefly was autosomal and incompletely dominant, and the resistance was probably controlled by more than one gene. These results provide the basic information for designing successful management programmes for the control of houseflies. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Beta-cypermethrin, a synthetic pyrethroid insecticide, was applied frequently in the control of health pests including houseflies, Musca domestica L., in China. However, different levels of resistance to beta-cypermethrin were monitored in field strains of houseflies. A strain of M. domestica, 4420-fold resistant to beta-cypermethrin after continuous 25 generations of selection, was used in this paper to determine the mode of inheritance of pyrethroid resistance. RESULTS: The estimated realized heritability (h(2)) of beta-cypermethrin resistance was 0.30 in this resistant strain. Results of bioassays showed no significant difference in values of LD(50) and slope of log dose-probit lines between reciprocal progenies F(1) and F'(1), and yielded values of - 0.10 (F(1)) and - 0.11 (F'(1)) for the degree of dominance (D). Chi-square analysis from responses of self-bred and backcross progenies (F(2), BC(1) and BC(2) respectively) indicated that the null hypothesis, a single gene responsible for resistance, was accepted. The minimum number of independent segregation genes was 0.93 for F(1) by Lande's method. CONCLUSION: It was concluded that beta-cypermethrin resistance in the housefly was inherited as a single, major, autosomal and incompletely recessive factor. These results would provide the basic information for pest management programmes.  相似文献   

19.
A series of insecticidal dihydropyrazoles and related compounds have been shown to exhibit negative cross-resistance to a resistant (super-kdr) strain of houseflies with site-insensitivity to pyrethroids. The level of cross-resistance is similar to that observed previously for a range of N-alkylamides against the same strain.  相似文献   

20.
Samples of housefly (Musca domestica) field populations were collected from Danish livestock farms in 1997. The tolerance of the first‐generation offspring was determined for a number of insecticides. Dose‐response values were obtained by topical application for the pyrethroids bioresmethrin and pyrethrum, both synergised with piperonyl butoxide, and the organophosphate dimethoate. The organophosphates azamethiphos and propetamphos and the carbamate methomyl were tested in discriminating dose feeding bioassays. Resistance was low to moderate in most of the populations for most of the compounds tested, but this study also revealed the existence of high resistance to pyrethroid, organophosphate and carbamate insecticides in some populations. The resistance factors at LD50 for bioresmethrin/piperonyl butoxide ranged between 2 and 98, and for pyrethrum/piperonyl butoxide between 2 and 29. Our results indicate that pyrethroid resistance in Denmark is increasing, since four of the 21 farms showed more than 100‐fold resistance at LD95, a level of resistance only observed once before. Resistance factors at LD50 for dimethoate ranged from 9 to 100, and showed two distinct trends: populations with either decreasing or increasing resistance. Resistance to azamethiphos was found to be widespread and high. Although two strains with high methomyl and propetamphos resistance were observed, methomyl and propetamphos resistance is moderate and appears not to be increasing. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号