首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

2.
The nematicidal effect of soil amendments with dry top and root material from Medicago sativa and/or Medicago arborea was evaluated on the root-knot nematode Meloidogyne incognita and on the cyst nematode Globodera rostochiensis in potting mixes. All amendments suppressed root and soil population densities of both nematode species compared to non-treated and chemical controls. The suppressiveness of M. sativa differed between top and root material and among the amendment rates. In field conditions soil amendments with 20 or 40 t ha−1 of a pelleted M. sativa meal increased tomato crop yield and reduced soil population densities and root galling by M. incognita. It is suggested that saponins were at least partly responsible for the nematicidal activity.  相似文献   

3.
In order to accelerate breeding and selection for disease resistance to Fusarium wilt, it is important to develop bioassays which can differentiate between resistant and susceptible cultivars efficiently. Currently, the most commonly used early bioassay for screening Musa genotypes against Fusarium oxysporum f. sp. cubense (Foc) is a pot system, followed by a hydroponic system. This paper investigated the utility of in vitro inoculation of rooted banana plantlets grown on modified medium as a reliable and rapid bioassay for resistance to Foc. Using a scale of 0 to 6 for disease severity measurement, the mean final disease severities of cultivars expressing different levels of disease reaction were significantly different (P ≤ 0.05). Twenty-four days after inoculation with Foc tropical race 4 at 106 conidia ml−1, the plantlets of two susceptible cultivars had higher final disease severities than that of four resistant cultivars. Compared with ‘Guangfen No.1’, ‘Brazil Xiangjiao’ is highly susceptible to tropical race 4 and its mean final disease severity was the highest (5.27). The plantlets of moderately resistant cultivar ‘Formosana’ had a mean final disease severity (3.53) lower than that of ‘Guangfen No.1’ (4.33) but higher than that of resistant cultivars: ‘Nongke No.1’, GCTCV-119, and ‘Dongguan Dajiao’ (1.87, 1.73, and1.53, respectively). Promising resistant clones acquired through non-conventional breeding techniques such as in vitro selection, genetic transformation, and protoplast fusion could be screened by the in vitro bioassay directly. Since there is no acclimatization stage for plantlets used in the bioassay, it helps to improve banana breeding efficiency.  相似文献   

4.
The efficacy of a seed treatment of oilseed rape (OSR) (Brassica napus) with the rhizobacteria Serratia plymuthica (strain HRO-C48) and Pseudomonas chlororaphis (strain MA 342) applied alone or in combination against the blackleg disease caused by Leptosphaeria maculans was tested with different cultivars. Seeds were soaked in bacterial suspensions (bio-priming) to obtain log10 6–7 CFU seed−1. Cotyledons were inoculated with a 10 ul droplet of L. maculans spore suspension of log10 7 spores ml−1 and the disease index (size of lesions) was evaluated 14 days later. A mean disease reduction of 71.6% was recorded for S. plymuthica and of 54% for P. chlororaphis. The combined treatment was not superior to the treatment with S. plymuthica alone. The reduction of the disease caused by S. plymuthica was independent of the cultivar’s susceptibility, whereas the control effect recorded with P. chlororaphis increased with decreasing cultivar resistance to blackleg disease. The bacterial colonization of OSR was restricted to the roots and hypocotyl. No significant difference in bacterial colonization of the rhizosphere was observed between different cultivars, nor between single or combined bacterial seed treatments.  相似文献   

5.
The volatile antimicrobial substance allicin (diallylthiosulphinate) is produced in garlic when the tissues are damaged and the substrate allicin (S-allyl-l-cysteine sulphoxide) mixes with the enzyme alliin-lyase (E.C.4.4.1.4). Allicin undergoes thiol-disulphide exchange reactions with free thiol groups in proteins and it is thought that this is the basis of its antimicrobial action. At 50 μg ml-1, allicin in garlic juice inhibited the germination of sporangia and cysts and subsequent germ tube growth by Phytophthora infestans both in vitro and in vivo on the leaf surface. Disease severity in P. infestans-infected tomato seedlings was also reduced by spraying leaves with garlic juice containing allicin over the range tested (55–110 μg ml−1) with an effectiveness ranging from approximately 45–100%. Similarly, in growth room experiments at concentrations from 50–1,000 μg ml−1, allicin in garlic juice reduced the severity of cucumber downy mildew caused by Pseudoperonospora cubensis by approximately 50–100%. These results suggest a potential for developing preparations from garlic for use in specialised aspects of organic farming, e.g. for reducing pathogen inoculum potential and perhaps for use under glass in horticulture.  相似文献   

6.
Based on the observation that the root disease caused by P. cinnamomi on Q. ilex has a low incidence and severity in soils with medium-high Ca2+ content, we studied the ability of Ca2+ fertilizers to induce soil suppressiveness to the pathogen. Studies on cultures of P. cinnamomi exposed to different Ca2+ fertilizers in vitro showed significant inhibition of sporangial, chlamydospore and zoospore production at millimolar concentrations while mycelial growth was mainly unaffected. Experiments performed with artificially infested soil showed that some Ca2+ fertilizers induce a significant decrease on chlamydospore viability. Additionally, greenhouse experiments using artificially infested soils showed a significant reduction of foliar and root symptom severities in Holm oak seedlings growing in soils amended with Ca2+ fertilizers. We suggest that limestone amendments in oak rangelands could enhance the suppressiveness of soils to P. cinnamomi, and it is likely that the inhibition of sporangial production was the main mechanism involved.  相似文献   

7.
Yeast-like fungi were isolated from lesions on azuki bean (cv. Shin-Kyotodainagon) seeds that had been sucked by bean bugs in Kyoto Prefecture, Japan. On the basis of morphological and physiological characteristics and sequence data of the internal transcribed spacer (ITS) regions including the 5.8S rDNA, these yeasts were identified as Eremothecium coryli and E. ashbyi. Pathogenicity of those yeasts was confirmed by a reinoculation test. To our knowledge, this is the first report of the occurrence of yeast spot in azuki bean in Japan. The nucleotide sequence data reported are available in the GeneBank/EMBL/DDBJ database as accessions AB478291–AB478309 for E. coryli AZC1–19 and AB478310–AB478317 for E. ashbyi AZA1–8.  相似文献   

8.
Spodoptera exigua (Hübner) collected from three regions (two scallion-producing regions and one ginger-producing region) in Shandong, China and a laboratory colony of Wuhan (WHLC) were evaluated for their susceptibilities to ten insecticides (emamectin benzoate, chlorfenapyr, indoxacarb, spinosyn, tebufenozide, methoxyfenozide, chlorfluazuron, beta-cypermethrin, chlorpyrifos and methomyl) in 2008, 2009 and 2010 using a leaf-dip bioassay method. The results indicate that the resistance ratios of S. exigua to newer insecticides such as emamectin benzoate, chlorfenapyr and indoxacarb were all below 20-fold, with no obvious change in all 3 years. S. exigua exhibits moderate resistance to spinosyn, and its resistance ratios increased from 1.98–5.31-fold in 2008 to 14.31–64.20-fold in 2010 from three regions as compared with WHLC. S. exigua showed moderate to high resistance to insect growth regulators such as tebufenozide, methoxyfenozide, chlorfluazuron in 2008, 2009 and 2010, in which resistance to chlorfluazuron was rapidly increased from 31.49–88.19-fold in 2008 to 1184.39–2789.67-fold in 2010. Resistance of S. exigua to beta-cypermethrin and chlorpyrifos varied greatly among the three regions, ranging from 95.31–437.97-fold and 25.05–40.64-fold in 2008, 951.81–1304.40-fold and 44.91–186.33-fold in 2009, to 27.27–1095.31-fold and 19.12–267.98-fold in 2010. In contrast, S. exigua showed low resistance to methomyl, and the resistance ratio was below 5-fold in 3 years. There are several reasons accounting for varying degrees of resistance, including selection pressure, cropping structure and migration, in which the migration of S. exigua may play an important role.  相似文献   

9.
Better soil disinfestation methods, such as biological soil disinfestation (BSD), that are environmentally safe are increasingly been developed and used because of rising concerns related to environmental risks. We evaluated the efficacy of soil disinfestation using ethanol to control the fungus Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt of tomato. Survival of bud cells and chlamydospores declined markedly in soil saturated with diluted ethanol solution in the laboratory. In field trials, artificially added nonpathogenic Fusarium oxysporum and indigenous F. oxysporum were both strongly suppressed in soil saturated with 1% ethanol solution; a wheat bran treatment was not as effective. The artificially added fungus was not detected in three of four sites treated with ethanol but was detected in three of four sites amended with wheat bran. Using ethanol in pre-autoclaved soil was not suppressive; thus native microorganisms are essential for the suppression. This ethanol-mediated biological soil disinfestation (Et-BSD) temporarily increased the number of anaerobic bacteria, but the number of fungi and aerobic bacteria was stable. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) analysis revealed slight but apparent differences in bacterial community structures in the soil treated with Et-BSD compared with the structure in soils after other treatments such as water irrigation and in the control soil, which received neither organic amendment nor irrigation after 15 days. Et-BSD is a potentially effective and easy soil disinfestation method, and its impact on native, beneficial microorganisms is moderate.  相似文献   

10.
Treatment of sixth instar larvae and pupae of the polyphagous pest Spodoptera litura Fabr. (Lepidoptera: Noctuidae) with an acetone extract of leaves of Ashwagandha, Withania somnifera L. (Solanaceae), caused toxicity, molt disturbances, formation of larval–pupal, pupal–adult intermediates and adultoids. Our results suggest that W. somnifera acts as an insect growth regulator causing disruption of the endocrine mechanism regulating molting and metamorphosis.  相似文献   

11.
Xanthomonas oryzae pv. oryzicola, the causal agent of rice leaf streak disease, was found to be sensitive to streptomycin (an aminocyclitol glycoside antibiotic), by inhibition of protein synthesis resulting from interference with translational proofreading. This study aimed to determine the molecular resistance mechanism of X. oryzae pv. oryzicola to streptomycin. Seven streptomycin-resistant mutants were obtained by UV induction or streptomycin selection. These mutants can grow at 100 μg ml−1 of streptomycin while the wild-type strain (RS105) cannot grow at 5 μg ml−1. Sequencing indicated that the rpsL gene encoding ribosomal protein S12 has 375 bp encoding 125 amino acid residues. In all resistant strains, a mutation in which AAG was substituted for AGG (Lys→Arg) occurred either at codon 43 or 88. Two plasmids, pUFRRS and pUFRRX, were constructed by ligating the rpsL gene into the cosmid pUFR034. The plasmids pUFRRS and pUFRRX containing the Lys→Arg mutation of the rpsL gene conferred streptomycin resistance to the sensitive wild-type strain by electroporation. Both transformants, RS1 and RS2, could grow in the medium containing 50 μg ml−1 of streptomycin. A mutation at codon 43 or 88 in rpsL can result in resistance of Xanthomonas oryzae pv. oryzicola to streptomycin.  相似文献   

12.
Suspected Dickeya sp. strains were obtained from potato plants and tubers collected from commercial plots. The disease was observed on crops of various cultivars grown from seed tubers imported from the Netherlands during the spring seasons of 2004–2006, with disease incidence of 2–30% (10% in average). In addition to typical wilting symptoms on the foliage, in cases of severe infection, progeny tubers were rotten in the soil. Six strains were characterised by biochemical, serological and PCR-amplification. All tests verified the strains as Dickeya sp. The rep-PCR and the biochemical assays showed that the strains isolated from blackleg diseased plants in Israel were very similar, if not identical to strains isolated from Dutch seed potatoes, suggesting that the infection in Israel originated from the Dutch seed. The strains were distantly related to D. dianthicola strains, typically found in potatoes in Western Europe, and were similar to biovar 3 D. dadanti or D. zeae. This is the first time that the presence of biovar 3 strains in potato in the Netherlands is described. One of the strains was used for pathogenicity assays on potato cvs Nicola and Mondial. Symptoms appeared 2 to 3 days after stem inoculation, and 7 to 10 days after soil inoculation. The control plants treated with water, or plants inoculated with Pectobacterium carotovorum, did not develop any symptoms with either method of inoculation. The identity of Dickeya sp. and P. carotovorum re-isolated from inoculated plants was confirmed by PCR and ELISA.  相似文献   

13.
Root-knot nematodes (RKN) are obligate parasite species of the genus Meloidogyne that cause great losses in Arabica coffee (Coffea arabica L.) plantations. Identification of resistant genotypes would facilitate the improvement of coffee varieties aiming at an environmental friendly and costless nematode control. In this work, the C. arabica genotype ‘UFV 408-28’ was found to be resistant to the most destructive RKN species M. incognita. Pathogenicity assays indicated that the highly aggressive populations of M. incognita races 1, 2 and 3 were not able to successfully reproduce on ‘UFV 408-28’ roots and displayed a low gall index (GI = 2). An average reduction of 87% reduction of the M. incognita population was observed on ‘UFV 408-28’ when compared to the susceptible cultivar ‘IAC 15’. By contrast, ‘UFV 408-28’ was susceptible to the related species M. exigua and M. paranaensis (GI = 5 and 4, respectively). Histological observations performed on sections of UFV408-28 roots infected with M. incognita race 1 showed that nematode infection could be blocked right after penetration or during migration and establishment stages, at 6 days, 7 days and 8 days after infection (DAI). Fluorescence and bright field microscopy observations showed that root cells surrounding the nematodes exhibited HR-like features such as accumulation of phenolic compounds and a necrotic cell aspect. In the susceptible ‘IAC 15’ roots, 6 DAI, feeding sites contained giant cells with a dense cytoplasm. Necrotic cells were never observed throughout the entire infection cycle. The HR-like phenotype observed in the ‘UFV 408-28’—M. incognita interaction suggests that the coffee resistance may be mediated by a R-gene based immunity system and may therefore provide new insights for understanding the molecular basis of RKN resistance in perennial crops.  相似文献   

14.
Virus-like symptoms—red ringspots on stems and leaves, circular blotches or pale spots on fruit—were found on commercial highbush blueberry (Vaccinium corymbosum) cultivars Blueray, Weymouth, Duke and Sierra in Japan. In PCR testing, single DNA fragments were amplified from total nucleic acid samples of the diseased blueberry bushes using primers specific to Blueberry red ringspot virus (BRRV). Sequencing analysis of the amplified products revealed 95.7–97.7% nucleotide sequence identity with the BRRV genome. This paper is the first report of blueberry red ringspot disease caused by BRRV in Japan. The nucleotide sequence data reported in this paper are available in the GenBank/EMBL/DDBJ database as accessions AB469884 to AB469893 for BRRV isolates from Japan.  相似文献   

15.
The pathogenicity and reproductive fitness of Pratylenchus coffeae and Radopholus arabocoffeae from Vietnam on coffee (Coffea arabica) seedlings cv. Catimor were evaluated in greenhouse experiments. The effect of initial population densities (Pi = 0, 1, 2, 4, 8, 16, 32, 64, 128, and 256 nematodes per cm3 soil) was studied for both species at different days after inoculation (dai). The data were adjusted to the Seinhorst damage model Y = m + (1-m).zPi-T. Tolerance limit (T) for P. coffeae was zero for the height and the diameter of the coffee plants. For the diameter, the T-value for R. arabocoffeae was 25.6 for 30 and 60 dai and 12.8 for 90 and 120 dai. After 4 months T was zero. The low tolerance limits indicate that Arabica coffee is highly intolerant to both nematode species. At the end of the experiment (180 dai), all plants were infected and most were dead when inoculated with R. arabocoffeae at initial densities of 32, 64, 128 and 256 nematodes/cm3 soil. For P. coffeae plant death was already observed at the lowest inoculation densities. Growth of coffee was reduced at all inoculation levels for both species. Pratylenchus coffeae and R. arabocoffeae caused intense darkening of the roots, leaf chlorosis and a strong reduction of root and shoot growth. It was observed that P. coffeae mainly destroyed lateral roots rather than tap roots, whereas R. arabocoffeae reduced tap root length rather than the lateral roots. At the lowest inoculum densities, the reproduction factor of P. coffeae was 2.38 and 2.01 for R. arabocoffeae, indicating that arabica coffee is a host for both species. Plant growth as expressed by shoot height and shoot and root weight measured 60 dai was negatively correlated with nematode (both species) density as expressed by the geometric mean of nematode numbers at 30 and 60 dai.  相似文献   

16.
Laboratory studies assessing the degree of suitability of the mealybugs Planococcus ficus (Signoret), Planococcus citri (Risso) and Pseudococcus calceolariae (Maskell), towards the Sicilian ecotype of the encyrtid parasitoid Anagyrus sp. nr. pseudococci were carried out. All three species of mealybugs were shown to encapsulate the eggs of the encyrtid; however, significant differences were revealed among them in rates of encapsulation and/or superparasitism. The level of aggregate encapsulation and effective encapsulation of the parasitoid eggs by P. citri (74.95 ± 0.87 and 60.19 ± 1.70, respectively) was significantly higher than that recorded for P. ficus (aggregate encapsulation = 58.43 ± 0.83 and effective encapsulation = 31.31 ± 1.55) and significantly lower than the values found in Ps. calceolariae (93.99 ± 0.97 and 88.61 ± 2.03, respectively). As such, rates of parasitism were significantly lower for P. ficus compared with both P. citri and Ps. calceolariae. The two latter species of mealybugs showed similar rates of parasitism by A. sp. nr. pseudococci. Moreover, a significantly higher rate of superparasitism was found for Ps. calceolariae compared with both P. citri and P. ficus, whereas no significant differences were found between the two species of Planococcus for this parameter.  相似文献   

17.
Banana wilt disease is a typical vascular disease caused by the fungal pathogen Fusarium oxysporum f. sp. cubense 4 (Foc 4). Pattern recognition receptors in the plant cell membrane can recognize pathogen-associated molecular patterns (PAMPs) to activate multi-layer defense responses, including defense gene expression, stomatal closure, reactive oxygen species (ROS) burst and callose deposition, to limit pathogen growth. In the present study, we found that chitin elicitor receptor kinase 1 (CERK1) was required for the non-host resistance of Arabidopsis thaliana to Foc B2 (a strain of Foc 4). The cerk1 mutant had weaker defense responses after Foc B2 treatment, including lower expression of PAMP- and salicylic acid-responsive genes, no stomatal closure, lower ROS level and less callose deposition, than that of the wild-type plant. Consistent with this, the cerk1 mutant plants exhibited higher susceptibility to non-host pathogen Foc B2. These results suggest the crucial importance of CERK1 in Foc B2-triggered non-host resistance.  相似文献   

18.
The effects of some fungicides used against citrus diseases, on mycelial growth and conidial germination of Isaria farinosa (Holmsk.) Fries [Sordariomycetes: Hypocreales] and also on the pathogenicity of the fungus on citrus mealybug, Planococcus citri (Risso), were determined. Systemic fungicides such as tebuconazole, penconazole and nuarimol were the most effective as regards both conidial germination and mycelial growth. Protective fungicides such as captan, chlorothalonil, mancozeb and propineb inhibited conidial germination at between 1 and 5 μg ml−1 concentration, but captan, chlorothalonil and propineb did not inhibit the mycelial growth at 5,000 μg ml−1. Mancozeb inhibited mycelial growth between 2,500 and 5,000 μg ml−1. Sulphur and copper oxychloride did not inhibit the fungus even at very high concentrations. Sulphur, copper oxychloride, fosetyl-al, chlorothalonil and carbendazim did not decrease the mortality percentage caused by I. farinosa. Tebuconazole, penconazole and mancozeb were the most effective and respectively reduced the mortality from 83% to 33%, 28% and 30% in the ovisacs, from 81% to 29%, 27% and 29% in the 1st instar larvae, and from 84% to 34% in the adult females.  相似文献   

19.
Fusarium graminearum and F. verticillioides are among the most important pathogens causing ear rot of maize in Central Europe. Our objectives were to (1) compare eight isolates of each species on two susceptible inbred lines for their variation in ear rot rating and mycotoxin production across 3 years, and (2) analyse two susceptible and three resistant inbred lines for potential isolate x line interactions across 2 years by silk-channel inoculation. Ear rot rating, zearalenone (ZEA) and deoxynivalenol (DON) concentrations were evaluated for all F. graminearum isolates. In addition, nivalenol (NIV) concentrations were analysed for two NIV producers. Fumonisin (FUM) concentrations were measured for all F. verticillioides isolates. Mean ear rot severity was highest for DON producers of F. graminearum (62.9% of the ear covered by mycelium), followed by NIV producers of the same species (24.2%) and lowest for F. verticillioides isolates (9.8%). For the latter species, ear rot severities differed highly among years (2006: 24%, 2007: 3%, 2008: 7%). Mycotoxin concentrations among isolates showed a broad range (DON: 100–284 mg kg−1, NIV: 15–38 mg kg−1, ZEA: 1.1–49.5 mg kg−1, FUM: 14.5–57.5 mg kg−1). Genotypic variances were significant for isolates and inbred lines in all traits and for both species. Isolate x line interactions were significant only for ear rot rating (P < 0.01) and DON concentration (P < 0.05) of the F. graminearum isolates, but no rank reversals occurred. Most isolates were capable of differentiating the susceptible from the resistant lines for ear rot severity. For resistance screening, a sufficiently aggressive isolate should be used to warrant maximal differentiation among inbred lines. With respect to F. verticillioides infections, high FUM concentrations were found in grains from ears with minimal disease symptoms.  相似文献   

20.
Identification of the causal agent for anthracnose caused by C. acutatum and C. gloeosporioides based on morphological and cultural criteria is problematic as both are morphologically and genetically diverse. To evaluate a qualitative molecular method to readily distinguish between these two species, Restriction fragment length polymorphisms (RFLP) of a 1-kb intron of the glutamine synthetase (GS) gene was evaluated utilizing representative isolates from a world-wide collection. Unique band patterns of the 1-kb GS intron were obtained for C. acutatum (two fragments with 600 and 350 bp) and C. gloeosporioides (four fragments with 238–340, 252–254, 204, and 108–116 bp) based on PstI enzyme digestion of the amplified PCR product. These data were also confirmed by PstI digestion of the intron DNA sequences using BioEdit software. The identification based on RFLPs of the 1-kb GS intron was consistent with the identification based on previously evaluated species-specific primers (CaInt2 and CgInt). In addition, both species can be differentiated by multiplex PCR. CaInt2, CgInt and ITS4 in one PCR will distinguish between C. acutatum and C. gloeosporioides by differences in PCR product fragment size: 490 bp and 470 bp, respectively. Also, a rapid DNA extraction method was developed, which reduced the time for DNA extraction from two hours to five minutes. In summary, RFLP of the 1-kb GS intron is a reliable technique for identification and differentiation between both species, does not require a sequencing step, and may be useful to diagnostic clinics in helping to make disease management recommendations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号