共查询到13条相似文献,搜索用时 63 毫秒
1.
基于改进YOLO v5的自然环境下樱桃果实识别方法 总被引:1,自引:0,他引:1
为提高对樱桃果实识别的准确率,提升果园自动采摘机器人的工作效率,使用采集到的樱桃原始图像以及其搭配不同数据增强方式得到的数据图像共1816幅建立数据集,按照8∶2将数据集划分成训练集与测试集。基于深度学习网络,利用YOLO v5模型分别对不同数据增强方式以及组合增强方式扩增后的樱桃数据集进行识别检测,结果表明离线增强与在线增强均对模型精度提升有一定的正向促进作用,其中采用离线数据增强策略能够显著且稳定的增加检测精度,在线数据增强策略能够小幅度提高检测精度,同时使用离线增强以及在线增强能够最大幅度的提升平均检测精度。针对樱桃果实之间相互遮挡以及图像中的小目标樱桃检测难等导致自然环境下樱桃果实检测精度低的问题,本文将YOLO v5的骨干网络进行改动,增添具有注意力机制的Transformer模块,Neck结构由原来的PAFPN改成可以进行双向加权融合的BiFPN,Head结构增加了浅层下采样的P2模块,提出一种基于改进YOLO v5的自然环境下樱桃果实的识别网络。实验结果表明:相比于其他已有模型以及单一结构改进后的YOLO v5模型,本文提出的综合改进模型具有更高的检测精度,使平均精度均值2提高了29个百分点。结果表明该方法有效的增强了识别过程中特征融合的效率和精度,显著地提高了樱桃果实的检测效果。同时,本文将训练好的网络模型部署到安卓(Android)平台上。该系统使用简洁,用户设备环境要求不高,具有一定的实用性,可在大田环境下对樱桃果实进行准确检测,能够很好地满足实时检测樱桃果实的需求,也为自动采摘等实际应用奠定了基础。 相似文献
2.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减... 相似文献
3.
基于多尺度感知的高密度猪只计数网络研究 总被引:3,自引:0,他引:3
猪只盘点是生猪规模化养殖和管理中的重要环节,人工计数方法费时、费力,在大数据量的猪只盘点中容易出错。本文使用多尺度感知网络对高密度猪群图像中的猪只进行计数。通过对人群计数网络CSRNet的改进,得到猪只计数网络(Pig counting net, PCN),PCN采用VGG16作为前端网络提取特征,中间层采用空间金字塔(Spatial pyramid)结构对图像中的多尺度信息进行提取与融合,后端网络采用改进的膨胀卷积网络。PCN增加了多尺度感知结构、扩大了后端网络感受野,通过感知多尺度特征得到预测密度图,预测密度图反映了猪只空间分布,通过对密度图积分实现了猪只数量的估计。结果表明,在平均猪只数为 40.71的测试集图像上,PCN的计数准确率优于人群计数网络 MCNN、CSRNet和改进Counting CNN 的猪只计数网络,MAE和RMSE 分别为1.74和 2.28,表现出较高的准确性和鲁棒性;单幅图像平均识别时间为0.108s,满足实时处理要求。 相似文献
4.
日常行为是家畜健康状况的重要体现,在传统的行为识别方法中,通常需要人工或者依赖工具对家畜进行观察。为解决以上问题,基于YOLO v5n模型,提出了一种高效的绵羊行为识别方法,利用目标识别算法从羊圈斜上方的视频序列中识别舍养绵羊的进食、躺卧以及站立行为。首先用摄像头采集养殖场中羊群的日常行为图像,构建绵羊行为数据集;其次在YOLO v5n的主干特征提取网络中引入SE注意力机制,增强全局信息交互能力和表达能力,提高检测性能;采用GIoU损失函数,减少训练模型时的计算开销并提升模型收敛速度;最后,在Backbone主干网络中引入GhostConv卷积,有效地减少了模型计算量和参数量。实验结果表明,本研究提出的GS-YOLO v5n目标检测方法参数量仅为1.52×106,相较于原始模型YOLO v5n减少15%;浮点运算量为3.3×109,相较于原始模型减少30%;且平均精度均值达到95.8%,相比于原始模型提高4.6个百分点。改进后模型与当前主流的YOLO系列目标检测模型相比,在大幅减少模型计算量和参数量的同时,检测精度均有较高提升。在边缘设备上进行部署,达到了实时检测要求,可准确快速地对绵羊进行定位并检测。 相似文献
5.
为实现复杂自然环境下对桑树嫩叶处枝干的识别检测,改变当前桑叶采摘设备作业过程中依赖人工辅助定位的现状,解决识别目标姿态多样和环境复杂导致的低识别率问题,提出一种基于改进YOLO v5模型的桑树枝干识别模型(YOLO v5-mulberry),并结合深度相机构建定位系统。首先,在YOLO v5的骨干网络中加入CBAM(Convolutional block attention module)注意力机制,提高神经网络对桑树枝干的关注度;并增加小目标层使模型可检测4像素×4像素的目标,提高了模型检测小目标的性能;同时使用GIoU损失函数替换原始网络中的IoU损失函数,有效防止了预测框和真实框尺寸较小时无法正确反映预测框及真实框之间位置关系的情况;随后,完成深度图和彩色图的像素对齐,通过坐标系转换获取桑树枝干三维坐标。试验结果表明:YOLO v5-mulberry检测模型的平均精度均值为94.2%,较原模型提高16.9个百分点,置信度也提高12.1%;模型室外检测时应检测目标数53,实际检测目标数为48,检测率为90.57%;桑树嫩叶处枝干三维坐标识别定位系统的定位误差为(9.498 5 mm... 相似文献
6.
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。 相似文献
7.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。 相似文献
8.
针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法对部分图像数据进行预处理,提高边缘细节模糊的图像清晰度,降低图像中的阴影干扰。使用轻量级网络PP-LCNet重置了识别模型中的特征提取网络,减少模型参数量。采用Ghost卷积模块轻量化特征融合网络,进一步降低计算量。为了弥补轻量化造成的模型性能损耗,在特征融合网络末端添加基于标准化的注意力模块(Normalization-based attention module,NAM),增强模型对杂草和玉米幼苗的特征提取能力。此外,通过优化主干网络注意力机制的激活函数来提高模型的非线性拟合能力。在自建数据集上进行实验,实验结果显示,与当前主流目标检测算法YOLO v5s以及成熟的轻量化目标检测算法MobileNet v3-YOLO v5s、ShuffleNet v2-YOLO v5s比较,轻量化后杂草识别模型内存占用量为6.23MB,分别缩小54.5%、12%和18%;平均精度均值(Mean average precision,mAP)为97.8%,分别提高1.3、5.1、4.4个百分点。单幅图像检测时间为118.1ms,达到了轻量化要求。在保持较高模型识别精度的同时大幅降低了模型复杂度,可为采用资源有限的移动端设备进行农田杂草识别提供技术支持。 相似文献
9.
10.
肉鸽行为表现与鸽舍环境舒适度和肉鸽健康状况密切相关。为实现肉鸽行为精准检测、及时掌握肉鸽健康状况,提出了基于改进YOLO v4模型的肉鸽行为检测方法。由于肉鸽社交等行为特征相似性程度高,为了在复杂环境下准确识别肉鸽行为,本文采用自适应空间特征融合(Adaptively spatial feature fusion, ASFF)模块改进YOLO v4模型,在特征金字塔网络中增加ASFF模块,根据特征权值自适应融合多层特征,充分利用不同尺度特征信息,并且ASFF模块能有效过滤空间冲突信息、抑制反向梯度不一致问题、改善特征比例不变性以及降低推理开销。基于多时段的肉鸽清洁和社交行为数据集,自制5类肉鸽行为图像数据库,采用OpenCV工具进行模糊、亮度、水雾和噪声等处理扩充图像数据集(共10 320幅图像),增加数据多样性和模拟不同识别场景,提升模型泛化能力。本文按照比例8∶2划分训练集和验证集,训练总共迭代300个周期,对不同时段、角度、尺寸的肉鸽数据集进行检测。检测结果表明,在阈值0.50和0.75时YOLO v4-ASFF检测精度比YOLO v4的mAP50和mAP<... 相似文献
11.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。 相似文献
12.
为在自然环境下自动准确地检测樱桃番茄果实的成熟度,实现樱桃番茄果实自动化采摘,根据成熟期樱桃番茄果实表型特征的变化以及国家标准GH/T 1193—2021制定了5级樱桃番茄果实成熟度级别(绿熟期、转色期、初熟期、中熟期和完熟期),并针对樱桃番茄相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进的轻量化YOLO v7模型的樱桃番茄果实成熟度检测方法。该方法将MobileNetV3引入YOLO v7模型中作为骨干特征提取网络,以减少网络的参数量,同时在特征融合网络中加入全局注意力机制(Global attention mechanism, GAM)模块以提高网络的特征表达能力。试验结果表明,改进的YOLO v7模型在测试集下的精确率、召回率和平均精度均值分别为98.6%、98.1%和98.2%,单幅图像平均检测时间为82 ms,模型内存占用量为66.5 MB。对比Faster R-CNN、YOLO v3、YOLO v5s和YOLO v7模型,平均精度均值分别提升18.7、0.2、0.3、0.1个百分点,模型内存占用量也最少。研究表明改进的YOLO v7模型能够为樱桃番茄果实的自... 相似文献
13.
针对小麦考种过程中籽粒堆积、粘连和遮挡现象导致计数准确率低等问题,本文基于电磁振动原理设计了高通量小麦籽粒振动分离装置,通过分析受力探讨了籽粒离散分离程度的主要影响因素,并引入二阶离散系数建立了籽粒离散度等级评价方法。在此基础上,引入Swin Transformer模块构建YOLO v7-ST模型,对不同离散度等级下小麦籽粒进行计数性能测试。试验结果表明,YOLO v7-ST模型在3种离散度等级下平均计数准确率、F1值和平均计数时间的总平均值分别为99.16%、93%和1.19 s,相较于YOLO v7、YOLO v5和Faster R-CNN模型,平均计数准确率分别提高1.03、2.34、15.44个百分点,模型综合评价指标F1值分别提高2、3、16个百分点,平均计数时间较YOLO v5和Faster R-CNN分别减少0.41 s和0.36 s,仅比YOLO v7模型增大0.09 s。因此,YOLO v7-ST模型可实现多种离散度等级下不同程度籽粒遮挡和粘连问题的准确快速检测,大幅提高小麦考种效率。 相似文献