共查询到16条相似文献,搜索用时 62 毫秒
1.
及时、准确地获取覆膜农田的空间分布信息是防治地膜微塑料污染的基础。为准确地识别黄土高原地区的覆膜农田,本研究构建了基于Sentinel-2遥感影像和随机森林算法的适用于黄土高原覆膜农田遥感识别的特征集组合与多时相组合方案。以甘肃省临夏县、宁夏回族自治区彭阳县和山西省山阴县作为测试区,陕西省旬邑县作为验证区开展识别研究。首先,基于随机森林算法,针对3个不同的作物生育期(播期、生长旺盛期和收获期),在7种不同的特征集组合方案中优选出各时期识别精度最高的方案。然后,基于不同作物生育期的遥感影像及其对应的最优特征集组合方案,构建不同的多时相组合来进行覆膜农田识别并优选多时相组合。最后,利用旬邑县来验证构建的优选特征集组合与多时相组合识别覆膜农田的有效性,并绘制各研究区的覆膜农田空间分布图。结果表明:相比于其他遥感识别特征因子,Sentinel-2遥感影像光谱特征集中的可见光波段(B2、B3和B4)和短波红外波段(B11和B12),指数特征集中的归一化差值裸地与建筑用地指数(NDBBI)、归一化水体指数(NDWI)、裸土指数(BSI)、归一化建筑物指数(NDBI)和改进的归一化水体指数(MNDW... 相似文献
2.
针对干旱区复杂环境下水体光谱特性空间差异大、水体提取方法适用性差的问题,本研究基于Sentinel-2卫星多光谱数据,通过超分辨率算法重建10 m空间分辨率多光谱影像,将短波红外(Short-wave infrared, SWIR)重建波段、近红外(Near-infrared, NIR)重建波段作为水体识别特征波段,在此基础上采用超像素分割算法识别水体像元,基于24种光谱指数、支持向量机(Support vector machine, SVM)、神经网络(Neural network, NN)、K-means共构建60种水体提取方法,采用总体精度(Overall accuracy, OA)、准确率(Precision)、F1值、马修斯相关系数(Matthews correlation coefficient, MCC)等水体提取精度指标进行综合评价,以黑河流域为典型研究区,确定干旱区最佳水体提取方法。结果表明,基于Sentinel-2绿色波段(中心波长为560 nm)与超分辨率重建短波红外波段(中心波长为1 610 nm)构建的改进的归一化水体指数方法,显著增强水体提取时对干旱区细小水... 相似文献
3.
基于决策树和SVM的Sentinel-2A影像作物提取方法 总被引:2,自引:0,他引:2
以河南省濮阳县为研究区,以2017年8月6日遥感影像为基础数据源,基于地面样方和样本点数据分析构建植被指数阈值分割分类决策树,结合支持向量机(Support vector machine,SVM)分类方法实现了秋季主要作物种植面积遥感识别,并与其他方法分类结果进行了精度验证与对比。结果表明,与最大似然法(Maximum likelihood,ML)和SVM法相比较,决策树和SVM相结合能较好地解决线状地物和小地块作物提取不全以及椒盐现象等问题,可以对秋季复杂作物进行有效识别,作物分类提取总体精度和Kappa系数分别为92.3%和0.886。利用中分辨率单时相遥感影像,结合波谱特征和植被指数能有效提高复杂作物分类精度,为区域复杂作物分类提取提供技术参考和借鉴价值。 相似文献
4.
基于Sentinel-2遥感影像的玉米冠层叶面积指数反演 总被引:9,自引:0,他引:9
叶面积指数是描述玉米冠层结构的重要参数之一,决定玉米冠层的光合作用、呼吸作用、蒸腾和碳循环等生物物理过程,因此精确反演叶面积指数对玉米长势监测具有重要意义。以河北省保定市的涿州市、高碑店市、定兴县为研究区,利用Sentinel-2遥感影像和LAI-2000地面同步实测数据进行玉米冠层叶面积指数反演,使用归一化差异光谱指数和比值型光谱指数两类指数,构建了单变量和多变量玉米冠层叶面积指数反演模型,通过决定系数(R2)和均方根误差(RMSE)筛选出最佳模型。研究结果表明,由NDSI(783,705)构建的单变量模型为最优反演模型,其决定系数为0.534 2,均方根误差为0.288 5。因此,基于Sentinel-2遥感影像利用植被指数反演玉米冠层叶面积指数的方法可作为判断玉米长势状况的初步判断依据。 相似文献
5.
针对精确获取大尺度空间范围内农业大棚的分布情况并进行长时间的序列动态监测存在数据量大、计算效率低、精度不高等问题,利用Google Earth Engine(GEE)云平台能够实现快速存取、实时处理海量卫星数据,基于多时相Landsat影像进行农业大棚时序光谱特征和纹理特征的自动提取,采用随机森林算法实现山东省农业大棚的遥感分类,从而生成了山东省近30年农业大棚的空间分布和时空动态变化图。结果表明,本文分类流程具有较高的分类精度,其平均总体精度达到91.63%,Kappa系数均值为0.8642。经分析,山东省农业大棚从1990年的6.67 km^2增加到2018年的9919.40 km^2,增长速度为354.03 km^2/a。 相似文献
7.
以吉林省四平市为研究区,利用Sentinel-1A上搭载的全天时、全天候、高分辨的双极化合成孔径雷达(Synthetic aperture radar, SAR)对玉米留茬区进行监测。对比分析了玉米作物留茬区和非留茬区C波段微波信号的后向散射特性,并探讨了不同极化组合下的差异,确定留茬区可分离性相对较高的模式。运用支持向量机(Support vector machine,SVM)方法对研究区主要地物进行识别,获取留茬区的地理分布及其覆盖面积和比例。实验结果表明不同极化组合均能得到比较理想的结果,证明了实验方案的有效性。特别是对于VH和VV双极化组合模式下,总识别精度为86.15%,留茬区识别精度达90.26%。 相似文献
8.
基于Google Earth Engine的黄土高原覆膜农田遥感识别 总被引:2,自引:0,他引:2
为了建立覆膜农田遥感识别技术体系,本研究选取甘肃省定西市安定区团结镇作为黄土高原地膜覆盖旱作农业代表性区域,基于Google Earth Engine云平台和Landsat-8反射率数据,采用特征重要性分析优选纹理特征,利用参数优化后的随机森林算法提取覆膜农田区域并选出最佳特征组合方案,最后通过对比随机森林、支持向量机、决策树和最小距离分类4种算法的分类结果来评价不同分类算法的性能。结果表明:优化关键参数后的随机森林算法能够显著提高遥感影像的分类精度;单一特征方案中,基于光谱特征的分类精度最高,且加入指数和纹理特征可提高总体识别精度;利用随机森林特征重要性分析选取的优选纹理特征分类性能优于全部纹理特征,基于光谱+指数+优选纹理特征方案的识别结果最佳,总体精度和Kappa系数达95.05%和0.94;与支持向量机、决策树和最小距离分类相比,随机森林优势明显,总体精度分别高3.10、7.74、50.78个百分点。本研究实现了对地形复杂地区覆膜农田空间分布较为精准的识别。 相似文献
9.
为准确、高效、自动化的提取大尺度范围冬小麦种植面积,利用Sentinel-2A卫星影像进行试验,提出一种基于中等分辨率影像的面向对象结合深度学习的遥感冬小麦提取方法。利用面向对象分类法和随机森林分类算法对2021年潍坊市冬小麦种植面积及种植区域进行提取和结果对比,证明面向对象分类法在提取冬小麦种植面积时的可行性和有效性。此外,利用面向对象方法得到的二值分类图像作为标签图像,基于TensorFlow框架,利用U-Net构建深度学习神经网络模型,使用训练得到最优模型提取2017—2021年潍坊市冬小麦种植面积。使用实地调查数据对分类结果进行精度验证,并对潍坊市近五年冬小麦种植面积进行年际变化分析。该分类方法的总体分类精度达93.1%,Kappa系数为0.91。本研究方法可为大范围的冬小麦种植指导和农业结构调整提供科学、可靠的依据。 相似文献
10.
水体溶解氧(Dissolved oxygen,DO)是养殖水产品健康生长的重要生态因子。池塘溶解氧易受多种因素的影响,会产生时间和空间上分布的差异,现有的溶解氧预测方法大多是针对单监测点的时间序列预测,无法描述池塘溶解氧的空间分布,因此,对池塘溶解氧进行时间和空间预测非常重要。本文提出一种基于自回归循环神经网络(Autoregressive recurrent neural network,DeepAR)和正则化极限学习机(Regularized extreme learning machine,RELM)的池塘溶解氧时空预测方法。首先采用样本熵(Sample entropy,SE)衡量各个监测点溶解氧序列的波动程度,采用最大互信息系数(Maximum mutual information coefficient,MIC)衡量监测点溶解氧序列之间的相关性,综合选取出溶解氧序列波动程度较小且与各个监测点相关性较大的监测点作为中心监测点,并以中心监测点为原点,建立池塘空间坐标系;其次采用DeepAR算法构建中心监测点的溶解氧时间序列预测模型,实现中心监测点溶解氧时间序列预测;最后采用RELM算法构建中心监测点与池塘各位置溶解氧之间的空间映射关系模型,结合中心监测点溶解氧时间序列预测值和池塘空间坐标,实现对未来时刻池塘溶解氧的空间预测。该方法在提高时间序列预测精度的同时,实现了对未来时刻池塘溶解氧空间状态的预测。在真实的数据集上进行测试,预测未来24h的池塘空间溶解氧值,均方根误差(RMSE)为1.2633mg/L、平均绝对误差(MAE)为0.9755mg/L、平均绝对百分比误差(MAPE)为14.8732%。并与标准极限学习机(Extreme learning machine,ELM)、径向基神经网络(Radial basis function neural network,RBFNN)、梯度提升回归树(Gradient boosting regression tree ,GBRT)和随机森林(Random forest,RF)4种预测方法进行对比,各评价指标的性能均有较大幅度提升,表明该方法有较好的预测精度和泛化能力,能够较准确地实现池塘溶解氧时空预测。 相似文献
11.
近年来,随着人为影响的加剧、社会经济的高速发展,地表水覆盖面积呈逐渐缩减态势.受研究范围广、统计难度大等因素的影响,湖北省地表水面积变化特征难以精确分析.利用Google Earth Engine平台(简称GEE),对湖北省及各行政区的地表水覆盖的变化特征情况进行分析与评价.结果表明:2000-2018年,湖北省地表水... 相似文献
12.
土壤水分是影响农业生产活动的重要因素,在旱情监测、农作物估产等方面有重要意义。研究采用水云模型来消除研究区域植被对后向散射的影响。建立植被含水量和归一化水指数的关系提取模型中所需的植被含水量参数。利用AIEM模型结合粗糙度参数Zs建立研究区土壤墒情反演模型,将模型应用于河南省焦作广利灌区,反演结果和实测值相关性达0.7。将水云模型与AIEM模型联合反演土壤墒情,取得了较为满意的结果,该方法具有较高的适用性。 相似文献
13.
吉林省是中国重要的粮食主产区和商品粮生产基地,全面、客观地揭示吉林省近20年耕地生产力水平,对挖掘区域增产潜力,推动耕地资源可持续利用,保障区域粮食安全具有重要意义。本文基于Google Earth Engine(GEE)平台提取2000—2019年吉林省MODIS-EVI数据,结合变异系数和Sen-Mann Kendall趋势检验,构建耕地生产力时空分析方法,研究吉林省20年耕地生产力时空变化、稳定性及变化趋势。结果表明:吉林省耕地生产力在20年间整体处于上升趋势,中西部耕地集中连片区生产力的变化趋势好于东部较为破碎耕地片区,西部耕地与东部耕地生产力差距逐渐缩小。吉林省东部山区的耕地生产力高于西部平原区,耕地生产力低值区位于城镇周边和西北部盐碱泡沼分布密集的低洼地带;高值区集中在河流附近耕地连片区域。不同地貌类型成因中,湖成地貌、风成地貌条件下耕地生产力低于流水地貌和火山熔岩地貌。耕地生产力稳定性呈东南高西北低的趋势,其中水田的生产力稳定性优于旱地和水浇地。利用时序遥感数据监测吉林省耕地生产力,可为高标准农田建设、耕地质量提升等工程的开展提供技术支撑。 相似文献
14.
基于Sentinel-1和Sentinel-2数据融合的农作物分类 总被引:5,自引:0,他引:5
基于光学影像的遥感技术受云雨、昼夜影响较大,导致获取连续的作物时序生长曲线较困难,而雷达影像作为主动式成像,能够很好地克服这一缺陷。本文以陕西省渭南市大荔县某农场为研究区域,分别采用最大似然法(Maximum likelihood,ML)和支持向量机(Support vector machine,SVM)2种方法,融合Sentinel-1雷达影像和Sentinel-2光学影像,提高农作物的分类精度。研究结果表明,融合数据的农作物分类精度相比光学数据分类精度有所提高。在无云层覆盖的情况下,利用SVM方法融合Sentinel-2的红、绿、蓝、近红外4个波段数据与Sentinel-1数据,总体分类精度提高了2个百分点,Kappa系数提高了5个百分点;在有少量云层覆盖情况下,利用ML处理融合数据的分类结果精度和Kappa系数分别提高2个百分点和4个百分点,SVM方法下的分类精度提高了6个百分点,Kappa系数提高了8个百分点。 相似文献
15.
基于RNMU的多源星载SAR影像融合与土地覆盖分类 总被引:1,自引:0,他引:1
为充分利用多时相、多极化SAR数据在不同土地覆盖类型中的后向散射特性,将递归非负矩阵下近似(Recursive nonnegative matrix underapproximation,RNMU)算法引入多源SAR数据的融合,并利用融合后的SAR影像实现较高精度的土地覆盖分类。融合过程中,在根据不同模式SAR影像特点进行多源SAR影像预处理的基础上,基于RNMU算法通过对多个输入SAR影像进行矩阵分解及迭代最优矩阵求解,得到融合影像。为验证融合后SAR影像在土地覆盖分类中的应用效果,以吉林省大安市为研究区,对多时相Sentinel-1的VV/VH双极化SAR数据和高分三号(GF-3)的HH/HV双极化SAR数据进行了基于RNMU的影像融合,并利用融合后的SAR影像进行研究区主要土地覆盖类型分类。实验结果表明,基于RNMU融合影像的土地覆盖分类总体精度达93. 11%,Kappa系数为0. 86,与Gram-Schmid(G-S)融合方法相比,分类总体精度提高了6. 83个百分点,Kappa系数提高0. 12。多源SAR融合为SAR影像融合提供了有效手段,为土地覆盖分类提供了更多高精度的数据资源。 相似文献
16.
基于STELLA的循环水养殖系统池塘总氨氮动态模拟 总被引:1,自引:0,他引:1
通过对影响循环水养殖系统养殖池塘中总氨氮动态的各种因素及其因果关系的分析,得出了养殖池塘中总氨氮的理论模型.在理论模型基础上,使用STELLA系统动力学模拟软件建立了循环水养殖实验系统中池塘水体总氨氮的系统动力学模型.通过将系统设计和运行的相关参数代人到该模型中,对养殖过程中池塘中总氨氮的动态变化进行了模拟运算,模拟结果与实测值基本吻合,说明该模型对实验系统的模拟具有一定的可信度,可为循环水养殖系统的设计和运行优化提供依据. 相似文献