首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The aerobic incubation procedures commonly used in biological studies have several disadvantages to assess inhibition of nitrification. Therefore, a more suitable procedure was developed. It involves pre-incubating soil samples treated with (NH4)2HPO4 to establish a uniform population of nitrifiers before the addition of the nitrification inhibitor or other amendments. Through successive additions of (NH4)2HPO4, a constant nitrification rate is maintained. This system enables direct comparison between treatments throughout the experiment.Data obtained using this procedure indicated that sorption of Nitrapyrin (NI) is a major factor decreasing the effectiveness of NI in organic soils. Loss of NI by volatilization also decreased its effectiveness, while the relative inhibition by NI was found to increase as soil pH increases. The greater susceptibility of nitrifiers to NI at high pH may be due to a relationship between pH and nitrifier ecology.  相似文献   

2.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

3.
In Guo et al. (2022), the difference between pure nitrification inhibitors (NI), fertilizers treated with NI, and formulations containing NI was insufficiently considered. Presented results are misleading and inappropriate to evaluate the efficiency of an NI application by pure NI as well as NI-treated products such as ENTEC® 26 and PIADIN®, in particular with respect to practical field conditions.  相似文献   

4.
[目的]在农业生产中,脲酶抑制剂(urease inhibitor,UI)与硝化抑制剂(nitrification inhibitor,NI)常作为氮肥增效剂来提高肥料利用率。本文研究了在我国南方红壤稻田施用脲酶抑制剂与硝化抑制剂后,土壤中氨氧化细菌(ammonia oxidizing bacteria,AOB)、氨氧化古菌(ammonia-oxidizing archaea,AOA)以及反硝化细菌的丰度以及群落结构的变化特征,旨在揭示抑制剂的作用机理及其对土壤环境的影响。[方法]试验在我国南方红壤稻田进行,共设5个处理:1)不施氮肥(CK);2)尿素(U);3)尿素+脲酶抑制剂(U+UI);4)尿素+硝化抑制剂(U+NI);5)尿素+脲酶抑制剂+硝化抑制剂(U+UI+NI),3次重复。脲酶抑制剂与硝化抑制剂分别为NBPT[N-(n-butyl)thiophosphrictriamide,N-丁基硫代磷酰三胺]和DMPP(3,4-dimethylpyrazole phosphate,3,4-二甲基吡唑磷酸盐)。通过荧光定量PCR(Real-time PCR)研究水稻分蘖期与孕穗期抑制剂对三类微生物标记基因拷贝数的影响,并分析土壤铵态氮、硝态氮与三种菌群丰度的相关性;利用变性梯度凝胶电泳(DenaturingGradient Gel Electrophoresis,DGGE)分析抑制剂对土壤AOB、AOA以及反硝化细菌群落结构的影响,并对优势菌群进行系统发育分析。[结果]1)荧光定量PCR结果表明,施用氮肥对两个时期土壤中AOB的amoA基因与反硝化细菌nirK基因的拷贝数均有显著提高,而对AOA的amoA基因始终没有明显影响;AOB与nirK反硝化细菌的丰度与两个时期的铵态氮含量、分蘖期的硝态氮含量呈极显著正相关,与孕穗期的硝态氮含量相关性不显著;DMPP仅在分蘖期显著减少了AOB的amoA基因拷贝数,表明DMPP主要通过限制AOB的生长来抑制稻田土壤硝化过程;NBPT对三类微生物的丰度无明显影响;2)DGGE图谱表明,在分蘖期与孕穗期,施用氮肥均明显增加了图谱中AOB的条带数,而对AOA却没有明显影响;氮肥明显增加了孕穗期反硝化细菌的条带数;与氮肥的影响相比,抑制剂NBPT与DMPP对AOA、AOB以及反硝化菌的群落结构影响甚微;系统发育分析结果表明,与土壤中AOB的优势菌群序列较为接近的有亚硝化单胞菌和亚硝化螺菌。[结论]在南方红壤稻田中,施入氮肥可显著提高AOB与反硝化细菌的丰度,明显影响两种菌群的群落结构,而AOA较为稳定;NBPT对三类微生物的群落结构丰度无明显影响;硝化抑制剂DMPP可抑制AOB的生长但仅表现在分蘖期,这可能是其缓解硝化反应的主要途径;这也说明二者对土壤生态环境均安全可靠。  相似文献   

5.
三种硝化抑制剂在石灰性土壤中的应用效果比较   总被引:9,自引:1,他引:8  
刘涛  梁永超  褚贵新  马丹  刘倩  王健 《土壤》2011,43(5):758-762
在人工气候室内采用25℃黑暗培养法研究双氰胺(DCD)、3,4-二甲基吡唑磷酸(DMPP)及2-氯-6-三氯甲基吡啶(Nitrapyrin)在石灰性土壤中的硝化抑制效果。结果表明:施用DCD、DMPP、Nitrapyrin的土壤NH4+-N含量较单施硫酸铵的土壤(对照)分别提高228.45~244.85 mg/kg(砂土)、209.75~254.79 mg/kg(黏土),NO3--N含量较对照分别降低93.85%~94.99%(砂土)、91.82%~95.38%(黏土)。表观硝化率随培养进程增加缓慢,培养期间只增加了1.28%~2.09%(砂土)、2.72%~8.40%(黏土),而对照增加了86.00%(砂土)、80.89%(黏土)。3种硝化抑制剂均显著抑制了石灰性土壤中硫酸铵水解铵硝化作用的进行,并且在砂土中的硝化抑制率高于黏土,硝化抑制效果最好的为DMPP处理,0.54%Nitrapyrin处理次之但用量最小,0.27%Nitrapyrin和10.8%DCD处理抑制效果相对较弱。  相似文献   

6.
The technology for the production of neem oil coated urea (NOCU) developed by the Indian Agricultural Research Institute is in the pipeline for adaption by several Indian fertilizer industries. Use of nitrification inhibitors is one of the methods of improving the nitrogen use efficiency (NUE) of nitrogenous fertilizers in agriculture. However, standard specifications for the neem oil as a raw material of NOCU are desired. Accordingly, the present study was undertaken to evaluate 25 samples of neem oils comprising 11 samples of expeller grade (EG) oils, 8 samples of cold-pressed (CP) oils, 3 samples of solvent-extracted oils, and 2 commercial formulations. NOCU was prepared using these oils (5000 ppm of urea-N). The soils fertilized with NOCUs (200 ppm of urea-N) were incubated at 27 degrees C and 50% water-holding capacity for a period of 15 days. Nitrapyrin (0.5% of N) coated urea served as the reference and prilled urea as control. Samples were analyzed for NH4+-N, NO2--N, and NO3--N using standard methods. The percent nitrification inhibition (NI) was calculated, and the results revealed that all of the neem oils caused NI ranging from 4.0 to 30.9%. Two samples of EG oils and two commercial formulations were found to be the best, causing 27.0-30.9% NI. Iodine, acid, and saponification values and meliacin content of all of the oils were analyzed and correlated with NI. The results revealed the direct influence of meliacin content of the neem oils on NI, which, however, was found to be negatively correlated with saponification and iodine values. There is, therefore, a need to introduce new Bureau of Indian Standards (BIS) specifications for neem oils as raw materials of NOCU.  相似文献   

7.
The effectiveness of Nitrapyrin (NI) as a nitrification inhibitor is largely determined by the rate at which it is hydrolyzed. A procedure was developed in which Cl? liberated during NI hydrolysis was used to follow NI degradation in laboratory studies. The procedure allowed determination of Cl? from as little as 0.5 mg·l?1 Nitrapyrin and permitted analysis of up to 20 samples h?1. The method must be restricted to experiments where background Cl?1 can be either removed by leaching or corrected for by use of control samples.Temperature was the most important factor affecting NI hydrolysis and the process was not biologically-mediated. The rate of hydrolysis was not affected by pH in the range 2.7–11.9, or by sorption on colloidal surfaces providing the surfaces remained in contact with the solution. Hydrolysis was slower in a soil at field moisture capacity than at saturation. The findings also showed that experiments conducted in containers with lipophilic components (e.g. rubber or polyethylene) may be suspect due to sorption of NI.  相似文献   

8.
Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N losses in N fertilizer-applied fields.In a field trial on a tropical Andosol pastureland in Costa Rica,gaseous emissions of ammonia(NH3)and nitrous oxide(N2O)and grass yield were quantified from plots treated with urea(U;41.7 kg N ha-1application-1)and urea plus the nitrification inhibitor nitrapyrin(U+NI;41.7 kg N ha-1application-1and 350 g of nitrapyrin for each 100 kg of N applied)and control plots(without U and NI)over a six-month period(rainy season).Volatilization of NH3(August to November)in U(7.4%±1.3%of N applied)and U+NI(8.1%±0.9%of N applied)were not significantly different(P>0.05).Emissions of N2O in U and U+NI from June to November were significantly different(P<0.05)only in October,when N2O emission in U+NI was higher than that in U.Yield and crude protein production of grass were significantly higher(P<0.05)in U and U+NI than in the control plots,but they were not significantly different between U and U+NI.There was no significant difference in yield-scaled N2O emission between U(0.31±0.10 g N kg-1dry matter)and U+NI(0.47±0.10 g N kg-1dry matter).The results suggest that nitrapyrin is not a viable mitigation option for gaseous N losses under typical N fertilizer application practices of pasturelands at the study site.  相似文献   

9.
DMPP减少稻田土壤氮素损失的研究进展   总被引:2,自引:0,他引:2  
周卉  田光明  李华  刘琛  李凝玉  傅庆林 《土壤》2013,45(6):964-969
以追求高产为目标的过量施肥不仅造成养分资源的浪费,而且由于养分流失导致对周边水体的污染。利用硝化抑制剂与氮肥配施被认为是减少农田氮素损失,提高氮肥利用率的有效途径。本文以新型硝化抑制剂3,4-二甲基吡唑磷酸盐(简称DMPP)为研究对象,就其特性与优势,结合稻田氮素循环的自身特点,重点介绍了DMPP对稻田氮素损失各主要环节的影响。从DMPP对稻田硝化与反硝化的作用机理、微生物影响及作用效果等方面,综述了其在减少稻田氮素损失、提高氮素利用率,降低农业面源污染风险,促进环境保护方面的作用。同时对目前研究中存在的问题和争议进行了分析讨论,对今后关于DMPP应该深入的研究方向进行了展望。  相似文献   

10.
[目的]研究脲酶抑制剂和硝化抑制剂对设施大棚蔬菜产量、土壤氮分布及土壤–蔬菜系统氮平衡的影响,为调控优化设施蔬菜生产中的氮素养分管理技术、减少氮素损失提供科学依据.[方法]供试蔬菜大棚位于河北省涿州市,种植年限8年,种植模式为黄瓜(Cucumis sativus L.)–紫甘蓝(Brassica oleracea L....  相似文献   

11.
The use of nitrification inhibitors (NI) is a technique which is able to improve N fertilizer use efficiency, to reduce nitrate leaching and to decrease the emission of the climate‐relevant gas N2O simultaneously, particularly in moderately fertilized agricultural systems adapted to plant N demand. The ammonia monooxygenase (AMO) is the first enzyme which is involved in the oxidation of NH$ _4^+ $ to NO$ _3^ - $ in soils. The inhibition of the AMO by NIs directly decreases the nitrification rate and it reduces the NO$ _3^- $ concentration which serves as substrate for denitrification. Hence, the two main pathways of N2O production in soils are blocked or their source strength is at least decreased. Although it has been shown that archaea are also able to oxidize NH3, results from literature suggest that the enzymatic activity of NH3 oxidizing bacteria is the most important target for NIs because it was much stronger affected. The application of NIs to reduce N2O emissions is most effective under conditions in which the NI remains close to the N ‐ fertilizer. This is the case when the NI was sprayed on mineral ‐ N fertilizer granules or thoroughly mixed with liquid fertilizers. Most serious problems of spatial separation of NI and substrate emerge on pasture soils, where N2O hotspots occur under urine and to a lesser extent under manure patches. From the few studies on the effect of different NI quantities it seems that the amount of NI necessary to reduce N2O emissions is below the recommendations for NI amounts in practice. NIs can improve the fertilizer value of liquid manure. For instance, the addition of NIs to slurry can increase N uptake and yield of crops when NO$ _3^ - $ ‐ N leaching losses are reduced. It has clearly been demonstrated that NIs added to cattle slurry are very effective in reducing N2O as well as NO emissions after surface application and injection of slurry into grassland soils. In flooded rice systems NIs can reduce CH4 emission significantly, whereas the effect on CO2 emission is varying. On the other hand, as an effect of the delay of nitrification by NIs, NH3 emission might increase when N fertilizers are not incorporated into the soil. As compared to other measures NIs have a high potential to reduce N2O emissions from agricultural soils. Further, no other measure has so consistently been proofed according its efficiency to reduce N2O emissions. From the published data [Akiyama et al. ( 2010 ) and more recent data from the years 2010–2013; 140 data sets in total] a reduction potential of approx. 35% seems realistic; however, further measurements in different management systems, particularly in regions with intense frost/thaw cycles seem necessary to confirm this reduction potential. These measurements generally should cover a whole annual cycle.  相似文献   

12.
An incubation study investigated the effects of nitrification inhibitors (NIs), dicyandiamide (DCD), and neem oil on the nitrification process in loamy sand soil under different temperatures and fertilizer rates. Results showed that NIs decreased soil nitrification by slowing the conversion of soil ammonium (NH4+)-nitrogen (N) and maintaining soil NH4+-N and nitrate (NO3?)-N throughout the incubation time. DCD and neem oil decreased soil nitrous oxide (N2O) emission by up to 30.9 and 18.8%, respectively. The effectiveness of DCD on reducing cumulative soil N2O emission and retaining soil NH4+-N was inconsistently greater than that of neem oil, but the NI rate was less obvious than temperature. Fertilizer rate had a stronger positive effect on soil nitrification than temperature, indicating that adding N into low-fertility soil had a greater influence on soil nitrification. DCD and neem oil would be a potential tool for slowing N fertilizer loss in a low-fertility soil under warm to hot climatic conditions.  相似文献   

13.
As a result of repeated applications, some fungicides may accumulate in the soil to levels high enough to have adverse effects on the activity of soil microorganisms and plant growth. Comparison of the effects of 10 mg kg‐1 soil of the benlate, captan, and lime‐sulfur fungicides with the nitrification inhibitors (NI) nitrapyrin and terrazole on oxidation of NH4 + in Tifton loamy sand (siliceous, thermic plinthic Typic Kandiudults) incubated at 30° C showed that benlate had no significant effects whereas captan inhibited nitrification 21% more than lime‐sulfur, but about 20% less than NI. Application of benlate enhanced NO3 reduction to N2O and N2 in liquid medium inoculated with soil whereas 50 and 100 mg L"1 medium of captan and lime‐sulfur compared favorably with the NI in suppressing NO3 and NO2 reductions, but were less effective than the inhibitors when applied at the low rate of 10 mg L‐1 medium. In a greenhouse study with tomato (Lycopersicon esculentum Mill. cv. ‘Better Boy'), weekly drench applications of 0.25 mg kg‐1 soil of the test biocides for four weeks with three NH4 +‐N: NO3 ‐N ratios showed that benlate applied with 1: 0 N ratio and lime‐sulfur applied with 0: 1 N ratio restricted significantly the plant growth and N uptake. The largest root: shoot ratios, total plant dry weight, and N uptake were obtained with plants fertilized with 1: 1 N ratio in combination with the biocides.  相似文献   

14.
全面、准确分析重要农业管理措施对于农业固碳减排的影响特征,对于中国农业可持续发展具有重要意义。该文以华北平原冬小麦-夏玉米生产为对象,研究硝化/脲酶抑制剂对土壤温室气体(CO_2、N_2O和CH4)排放、土壤有机碳和作物产量的影响;在此基础上利用土壤碳库排放法(soil based approach,SBA)、生物量排放法(crop based approach,CBA)和土壤生物量排放法(soilcrop based approach,SCBA)3种方法对农田净温室气体效应(net greenhouse gas warming potential,NGWP)进行评价。研究发现,相比只施尿素(U)处理,尿素+硝化抑制剂(NI)、尿素+脲酶抑制剂(UI)和尿素+硝化抑制剂+脲酶抑制剂(NIUI)均能增加粮食产量和降低净温室气体排放。用SCBA方法计算得到的农田温室气体净排放的潜力最大(15 704~17 860 kg/hm~2),CBA法次之(4 195~7 107 kg/hm~2),SBA法最低(-7 304~-6 599 kg/hm2)。由于3种方法的固碳单元不一样,评估结果差异较大、一致性差。SCBA方法更适于评价强调粮食生产条件下的农田净温室气体效应。增加作物籽粒和秸秆产量,降低化肥使用和减少灌溉量是提高当前华北平原农田温室气体系统净排放潜力的主要措施。  相似文献   

15.
盐碱草甸植被退化对土壤硝化作用强度的影响   总被引:1,自引:0,他引:1  
为了解不同退化阶段盐碱草甸草原土壤硝化作用强度特征及其影响因素,采用空间代替时间的方法,以松嫩平原盐碱草甸草原植被退化过程中4种典型植物群落为对象,以未做处理为参照,设置刈割、施氮和刈割同时施氮3种处理,测定了土壤的硝化作用强度(NI)、pH值、电导率(EC)、含水量(SMC)和有效磷(OP)、硝态氮(NO-3-N)、铵态氮(NH+4-N)及全氮(TN)的含量。结果显示:(1)土壤NI与pH值、电导率、含水量、OP和NO-3-N呈极显著正相关关系(p<0.01);通过逐步回归分析的方法得出土壤NI的重要影响因子,重要影响因子对土壤NI影响强弱表现为:pH值>有效磷含量>含水量>硝态氮含量,并推断土壤硝态氮含量可作为土壤NI的一个重要表征参数。(2)未作处理时,星星草群落与碱蓬群落土壤硝化作用强度分别为13.4,13.5 mg/(kg·h),显著高于羊草群落和退化羊草群落的5.0,2.5 mg/(kg·h),刈割和施氮处理分别使星星草群落土壤NI提高96.88%,253.77%,混合处理使其提高413.70%,显著高于其他3种植物群落,由此可见,在人为刈割和施氮肥的干预下,星星草群落土壤铵态氮可能更易转变为硝态氮,氮素流失的风险也更大,因此可认为星星草群落处于盐碱草甸退化过程中的关键阶段。  相似文献   

16.
Nitrification inhibition (NI) of applied fertilizer nitrogen (N) is a suitable approach to improve N-use efficiency. Formulated calcium carbide (CaC2), a slow-release origin of acetylene, is a potent nitrification inhibitor; however, its efficacy in relation to different formulations has not been thoroughly investigated. In this study, seven CaC2 formulations viz. encapsulated; coated with beeswax, paraffin wax or paint, and matrix-I (21% CaC2, 58% polyethylene and 21% plaster of paris), matrix-II (42% CaC2, 48% polyethylene and 10% plaster of paris) and matrix-III (61% CaC2, 34% polyethylene and 5% paraffin oil) were incubated with soil and their effectiveness in acetylene and ethylene release and NI potential were compared up to 91 days. In CaC2 treatments, acetylene flux was decreased, whereas that of ethylene first increased and then decreased with time. During all the time intervals after day 7 of incubation, fluxes of acetylene and ethylene and NI were significantly greater with matrix I, followed by matrix II, paint-coated, and wax-coated CaC2. No acetylene release was noted with encapsulated or matrix III formulations after day 35 of incubation. Among other CaC2 formulations, matrix I, matrix II, and paint-coated CaC2 were better precursors of acetylene and ethylene, and nitrification inhibitors in the soil.  相似文献   

17.
脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响   总被引:10,自引:7,他引:3  
采用密闭室间歇通气法和15N标记技术研究了尿素施入稻田后氨挥发损失特征以及脲酶抑制剂(N-丁基硫代磷酰三胺,NBPT)和硝化抑制剂(3, 4-二甲基吡唑磷酸盐,DMPP)对稻田氨挥发损失的影响。结果表明,稻田施用尿素后第4天氨挥发速率达到峰值,氨挥发损失主要发生在施肥后21天内。与单施尿素处理相比,添加NBPT处理的氨挥发速率峰值降低27.04%,累积氨挥发损失量降低21.65%;NBPT与DMPP配施时,氨挥发速率峰值降低12.95%,累积氨挥发损失量降低13.58%;而添加DMPP时,氨挥发速率峰值增加23.61%,累积氨挥发损失量与单施尿素的差异不显著。相关性分析表明,地表水中铵态氮浓度和pH值与氨挥发速率均达极显著正相关,说明二者是影响氨挥发速率的主要因素,而气温、 地温和水温与氨挥发速率的相关性不显著。与单施尿素相比,添加脲酶抑制剂可显著增加稻谷产量。脲酶抑制剂与硝化抑制剂配合施用可更有效地提高氮肥的回收率。综合降低氨挥发、 提高水稻产量及地上部氮肥回收率的效果,添加脲酶抑制剂以及脲酶抑制剂与硝化抑制剂配施的两个处理效果较为理想,硝化抑制剂不宜单独添加。  相似文献   

18.
Slurry injection below the maize (Zea mays L.) row may substitute a mineral nitrogen (N) phosphorus (P) starter fertilizer (MSF) and thus reduce nutrient surpluses in regions with intensive livestock husbandry. We investigated the plant P, zinc (Zn), and manganese (Mn) status compared to the current farm practice. In 2014 and 2015 field trials were conducted to evaluate plant nutrient status at different growth stages. Besides an unfertilized control, two slurry injection treatments (±nitrification inhibitor (NI)) were compared to slurry broadcast application plus MSF. In both experiments NI addition significantly increased nutrient concentrations during early growth (6-leaf 2015: +33% P, +25% Zn, +39% Mn). Under P deficiency due to cold weather conditions broadcast application showed higher P uptake until 6-leaf (36–58%), while it was lower at 8- (32%) and 10-leaf (19%) stage compared to slurry injection (+NI). Zn availability was enhanced for slurry injection (+NI) during early growth and Zn and Mn uptakes were higher at harvest. Slurry injection decreased P balances by 10–14 kg P ha?1, while Zn and Mn balances were excessive independent of treatments. Slurry injection (+NI) can substitute a MSF without affecting early growth and enhances the Zn and Mn status. This new fertilizing strategy enables farmers to reduce P surpluses.  相似文献   

19.
 An incubation experiment with composted sewage sludge (CSS) just added to the soil was conducted to determine its initial effects on C decomposition, N nitrification and the transformation of organic matter. CSS was mixed with a sandy loam soil from uncultivated ochric epipedon of a Typic Haploxeralf at rates of 0, 40 and 80 t ha–1 (dry weight). The data obtained showed that with regard to the unamended soil, both the 40 and the 80 t ha–1 treatments produced the same result in decreasing respiratory activity, but the addition of increasing amounts of CSS progressively delayed C decomposition. The nitrification index (NI), defined as the relation between nitrate-N and nitrate-N + ammonium-N, increased in correlation with the C mineralization coefficient. Total organic matter decreased after incubation whereas the humic substances increased in relation to the total C mineralized. Received: 28 October 1999  相似文献   

20.
研究氮肥增效剂对寒地水稻产量、品质及氮素利用的影响,旨在为制定合理的稻田氮素管理措施及增产、提质和增效策略提供科学依据。2017年和2018年在黑龙江省方正县设置田间试验,研究氮肥配施硝化抑制剂和脲酶抑制剂对水稻产量、品质、氮素利用和转化及经济收益的影响。结果表明:尿素配施硝化抑制剂CP和脲酶抑制剂NBPT(N+NI+UI)显著提高水稻产量,2017年较氮肥处理(N)水稻籽粒、秸秆和总生物量分别增产6.4%,4.9%和5.8%,2018年分别增产8.8%,7.2%和8.2%。施用氮肥增效剂可以提高寒地水稻碾磨品质、外观品质和营养品质,并促进水稻氮素吸收,提高氮肥利用效率。与N处理相比,N+NI+UI处理水稻氮肥表观利用率、氮肥农学效率和氮肥偏生产力分别提高15.6%,19.1%和7.6%。CP和NBPT配施对氮素转化表现出明显的协同抑制效果,延迟和降低土壤NH4^+—N含量峰值,保持水稻生育期较高的NH4^+—N含量,延长了氮素供应时间。施用氮肥增效剂可使寒地水稻增收2499.08元/hm^2。可见,寒地水稻氮肥配施硝化抑制剂CP与脲酶抑制剂NBPT能够延长氮素释放周期,促进水稻氮素吸收,增加水稻产量,改善水稻品质,提高氮肥利用效率,增加经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号