首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al3+是植物铝毒害的主要形态,而其活性受环境pH值的影响,H+-ATPase通过调节根的质子分泌改变根际pH值。为探讨铝胁迫下根际pH值变化与小麦耐铝性的关系,以小麦品种ET8(耐铝型)、ES8(铝敏感型)为试验材料,采用溶液培养的方法对铝胁迫下根际pH值及根尖H+-ATPase活性变化进行了研究。结果表明,铝处理条件下,小麦根际pH值随培养时间的延长而升高;随培养液中铝浓度的增加,根际pH值上升幅度下降,相同铝浓度处理条件下ET8根际pH值显著高于ES8。根际pH值与根尖铝含量呈极显著负相关(R2=0.932 1),与根相对伸长率呈极显著正相关(R2=0.858 5),表明小麦通过提高根际pH值降低根尖铝含量,减轻铝毒害。根尖H+-ATPase活性随铝处理浓度升高而显著降低,100 μmol·L-1Al处理24 h ET8和ES8根尖H+-ATPase活性分别为各自无铝处理的69.8%和60.0%,根尖H+-ATPase相对活性与根际pH值呈极显著负相关(R2=0.831 9)。温度显著影响根的伸长,低温处理(9 ℃)根际pH值显著高于常温处理(25 ℃),而根尖铝含量却显著低于常温处理。表明小麦通过根尖H+-ATPase提高根际pH值降低铝毒害。综上所述,铝胁迫下小麦可通过提高根际pH值减轻铝毒害,不同耐铝性小麦品种根际pH值的显著差异是耐铝性差异显著的  相似文献   

2.
3.
To study the interrelationship of organic acids and aluminum concentrations in rhizosphere and nonrhizosphere soil solution of rice (var. Satabdi and IR 64) in acidic soil, plants were grown in plastic pots containing 500 g soil. Three organic acids (viz., tartaric, oxalic, and citric acids) were identified and quantified in rice rhizosphere and nonrhizosphere soils. Organic acids were found more in the rhizosphere soil and at early stages of crop growth, decreased sharply after 30 days of germination, and found in negligible quantity after 45 days of germination. Regression analysis revealed a significant and negative relationship between solution aluminum and organic acid. Satabdi showed greater organic acid concentration in rhizosphere soil, leading to significantly lower root and shoot aluminum concentrations and consequently significantly greater dry-matter production as well as root volume, compared to IR 64. The findings established that organic acids can effectively reduce aluminum concentration in soil solution.  相似文献   

4.
水分调控对水稻根际土壤反硝化作用的影响   总被引:2,自引:0,他引:2  
陈志刚    刘龙梅  陈蕾  周晓红 《水土保持研究》2015,22(5):133-137,145
以水稻农田生态系统为研究对象,采用室内盆栽试验,研究干湿交替、浅水层连续灌溉以及控水3种水分管理模式引起的水分变化对水稻根际土壤反硝化作用过程的影响。结果表明:浅水层连续灌溉模式下的反硝化强度、反硝化速率、反硝化势的平均值为2.19 mg/(kg·d),118.54 mmol/(m2·d),28.42 mol/(m2·d),而干湿交替模式以及控水模式下,反硝化强度平均值仅为连续灌溉模式的64.40%,52.34%,反硝化速率平均值为连续灌溉模式的69.02%,59.73%,反硝化势平均值为连续灌溉模式的77.39%,81.43%,即3种水分管理模式下,水稻根际土壤反硝化强度、反硝化势以及反硝化速率均表现为连续灌溉 > 干湿交替 > 控水模式。随着水稻的生长,3种水分管理模式下的水稻根际土壤反硝化强度、反硝化势以及反硝化速率均呈现递减趋势,表现为分蘖期 > 孕穗期 > 成熟期;相关分析表明,根际土壤反硝化强度、反硝化势及反硝化速率与系统中NO3-浓度有显著相关性,由此可见,3种水分模式下,水分及其植物生长导致底物NO3-浓度的差异是影响水稻根系土壤反硝化作用过程的因子。  相似文献   

5.
A five-step sequential extraction procedure was used for the fractionation of selenium (Se) in rhizosphere and nonrhizosphere soils with rice (Oryza sativa L.) seedlings. Results showed that in rhizosphere soils without the addition of Se, the soluble Se (Sol-Se), exchangeable Se and Se bound to carbonates (Exc-Se), Se bound to organic-sulfide matter and elemental Se (OM-Se), and total Se contents were significantly greater than those in nonrhizosphere soils, whereas the residual Se (Res-Se) was less than that in the nonrhizosphere soils. After the addition of Se, the Sol-Se and OM-Se contents in the rhizosphere soils were still evidently greater than those in nonrhizosphere soils, but the Exc-Se was significantly less in rhizosphere soils than in nonrhizosphere soils. Our overall results suggest that the Se bioavailability in rice rhizosphere soils is greater than that in nonrhizosphere soils. Selenium bioavailability in the rhizosphere soil is not correlated with Se accumulation in rice seedlings.  相似文献   

6.
Seventeen soybean cultivars were screened to discern differences in aluminum (Al) sensitivity. The Sowon (Al-tolerant) and Poongsan (Al-sensitive) cultivars were selected for further study by simple growth measurement. Aluminum-induced root growth inhibition was significantly higher in the Poongsan cultivar than in the Sowon cultivar, although the differences depended on the Al concentration (0, 25, 50, 75 or 100 μmol L–1) and the amount of exposure (0, 3, 6, 12 or 24 h). Damage occurred preferentially in the root apex. High-sensitivity growth measurements using India ink implicated the central elongation zone located 2–3 mm from the root apex. The Al content was lower 0–5 mm from the root apices in the Sowon cultivar than in the apices of the Poongsan cultivar when exposed to 50 μmol L–1 Al for 12 h. Furthermore, the citric acid exudation rate was more than twofold higher in the Sowon cultivar. Protein production of plasma membrane (PM) H+-ATPase from the root apices (0–5 mm) was upregulated in the presence of Al for 24 h in both cultivars. This activity, however, decreased in both cultivars treated with Al and the Poongsan cultivar was more severely affected. We propose that Al-induced growth inhibition is correlated with changes in PM H+-ATPase activity, which is linked to the exudation of citric acid in the root apex.  相似文献   

7.
分次施氮对水稻根际土壤微生物生态效应的影响   总被引:7,自引:0,他引:7  
研究了分次施氮条件,施氮对水稻根际土壤微生物生态效应的影响,结果表明:水稻根际土壤微生物生态效应不仅仅受到根际土壤微生物的影响,同时也受到水稻生长状态的影响。一般来说,水稻生长旺盛的时候,水稻根系与根际土壤微生物竞争营养元素,导致水稻根际微生物活性的下降。在水稻生长周期内,水稻根际土壤微生物生物量C与根际土壤酶等变化不一致。分次施氮条件下,施氮对根际微生物生物量C、磷酸酶、脲酶、总蛋白和总酚有一定的影响,尤其是在水稻生长的后期,4次施氮全部完成后,施氮与不施氮表现出明显的差异。  相似文献   

8.
为探讨酸化土壤影响水稻氮利用效率的土壤生物学机制,以酸性敏感型品种五优308和酸性特异型品种荆楚优148为材料,采用盆栽试验考察不同土壤pH条件下水稻的氮利用效率指标与根际土壤酶活性及微生物数量的关系。结果表明,在土壤pH值3.5~6.5范围内,五优308氮素稻谷生产效率(NGPE)与氮生理效率(NPE)随土壤pH值的下降显著降低,氮收获指数(NHI)变化不明显;而荆楚优148中3个指标在pH值5.0时最大。土壤pH值的下降均降低了2个品种的根际土壤酶活性,但品种间、时期间降幅稍有差异。五优308各时期磷脂脂肪酸(PLFA)含量随土壤pH值降低而降低,而荆楚优148各时期PLFA含量在pH值5.0时最高。五优308的NGPE、NPE与3种土壤酶活性均呈显著正相关,而NHI仅与蔗糖酶活性呈极显著正相关;荆楚优148氮利用效率指标与土壤酶活性呈负相关,与土壤蔗糖酶和脲酶活性的相关性较显著;五优308氮利用效率指标与微生物数量呈正相关,但其显著性在不同生育时期间与微生物间有一定差异;而荆楚优148氮利用效率指标与分蘖~孕穗期土壤微生物数量呈极显著正相关,与齐穗期土壤微生物数量呈极显著负相关。由此可见,酸性敏感型水稻品种氮利用效率随土壤pH下降显著降低,且主要由根际土壤酶活性与微生物数量显著下降所致;而酸性特异型水稻品种氮利用效率在pH值5.0时最大,且其与土壤生物学特性指标的相关性表现与酸性敏感型水稻品种不同。本研究初步明确了酸化稻田影响水稻氮利用效率的土壤生物学机制,为酸化稻田适宜水稻品种选择提供了参考。  相似文献   

9.
用两相法分离了供磷(+P)和缺磷(-P)营养下水稻苗期根系的细胞膜,并测定了细胞膜上H+-ATPase的水解活性,以期阐明水稻根系细胞质膜上H+-ATPase对不同缺磷的反应机制。结果表明,缺磷的水稻根系细胞膜H+-ATPase的水解活性和H+-ATPase的Vmax, Km均低于正常供磷的植物;缺磷的水稻根系细胞膜H+-ATPase最佳pH值为 6.0,而正常供磷植物的为pH 6.4左右;Western Blot结果说明,缺磷水稻根系细胞膜H+-ATPase酶浓度与正常供磷植物相似。本试验结果还说明,缺磷水稻根系细胞膜H+-ATPase活性低的原因并不是因为其单位细胞膜上的H+-ATPase酶分子数量小于正常供磷的植物,而是缺磷水稻根系细胞膜上H+-ATPase的同工酶的组成供磷植物相比发生了变化。这很可能是缺磷胁迫下水稻根系细胞膜H+-ATPase的一种适应机制。  相似文献   

10.
Local farmers who living in South Kalimantan (Banjarese farmers) apply almost none of phosphatic (P) fertilizers to grow local rice varieties. This practice has been adopted for many years. We have investigated the mechanisms involved in P availability for the crop. This study focuses on identifying microorganisms involved in solubilizing insoluble P. The study was conducted in Balandean District, South Kalimantan, Indonesia. The soil was classified as acid sulfate soil. Three out of 8 rice varieties grown were selected for net P balance in the soil-plant system and the microbial studies. We found that the P uptakes by the rice crop was much higher than the sum of P released from soil, water and soil microbial biomass P. It was also observed that these soils harboured bacteria and fungi that have the capability of dissolving aluminium phosphate (AIPO4) and tricalcium phosphate [Ca3(PO4)2].
Based on the area of clear zone on plates, it seem that there were variations of ability in dissolving Al-P or Ca-P. DNA sequence analysis shown that Burkholderia sp. was the common P solubilizing bacterium found in the rhizosphere of rice varieties Siam Unus, Siam Ubi and Siam Puntal. The presence of other bacteria was specific for each rice variety grown.  相似文献   

11.
Exudation of organic acids by the roots of three rice cultivars grown in three soils of different phosphorus (P) statuses, and their impacts on the rhizospheric P dynamics and P uptake by the rice plants, were investigated. Quantum root exudates from all the rice cultivars were significantly greater at 21 days after transplantation than at panicle initiation or flowering stages. Malic acid was the most predominant organic acid present in the rice root exudates (10.3 to 89.5 μmol plant?1 d?1), followed by tartaric, citric, and acetic acids. Greater exudation of organic acids from rice grown in P-deficient soil by all the rice cultivars suggested response of rice plant to P stress. Results indicate that the release of organic acids in the root exudates of rice plants can extract P from strongly adsorbed soil P fraction, thereby increasing native soil P utilization efficiency and ensuring adequate P nutrition for the growing rice plants.  相似文献   

12.
A rhizobox experiment with two phosphorus (P) treatments, zero-P (0 mg P kg^-1) and plus-P (100 mg P kg^-1) as Ca(H2PO4)2.H2O, was conducted to study the chemical and biochemical properties in the rhizosphere of two rice genotypes (cv. Zhongbu 51 and Pembe) different in P uptake ability and their relationship with the depletion of soil P fractions. Plant P uptake, pH, phosphatase activity, and soil P fractions in the rhizosphere were measured. Both total dry weight and total P uptake of Pembe were significantly (P 〈 0.05) higher than those of Zhongbu 51 in the zero-P and plus-P treatments. Significant depletions of resin-Pi, NaHCO3-Pi, NaHCO3-Po, and NaOH-Pi, where Pi stands for inorganic P and Po for organic P, were observed in the rhizosphere of both Zhongbu 51 and Pembe under both P treatments. Pembe showed a greater ability than Zhongbu 51 in depleting resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, and NaOH- Po in the rhizosphere. HCl-Pi and residual-P were not depleted in the rhizosphere of both genotypes, regardless of P treatments despite significant acidification in the rhizosphere of Pembe under zero-P treatment. Higher acid phosphatase (AcPME) activity and alkaline phosphatase (AlPME) activity were observed in the rhizosphere of both Zhongbu 51 and Pembe compared to the corresponding controls without plant. AcPME activity was negatively (P 〈 0.01) correlated to NaHCO3-Po concentration in the rhizosphere of both Zhongbu 51 and Pembe, suggesting that AcPME was associated with the mineralization of soil organic P.  相似文献   

13.
间作作为一种可持续发展的种植模式不仅具有产量和养分获取的优势,而且能够保证粮食安全、降低作物减产风险。在众多间作组合中,豆科禾本科作物间作由于种间促进及生态位互补作用,而在世界范围内被广泛应用。根际是作物-土壤-微生物相互作用的界面,是养分、水分及有害物质从土壤进入作物系统参与食物链物质循环的必经门户,在根际中所发生的生物过程不仅决定着养分的供应量和有效性,而且也影响着作物的生产力和养分利用效率。因此,本文从豆科禾本科间作的根际生物过程角度出发,综述了豆科禾本科间作对根系形态、根际微生物、根系分泌物及其生态效应的研究进展,为豆科禾本科间作体系在修复重金属污染土壤、提高土壤中养分有效性以及植物遗传改良等方面的应用提供理论依据。  相似文献   

14.
研究了铝、氟及其交互作用对白茶和智仁早茶根际土壤酶的生态效应。结果表明,在单独施铝处理中,脲酶和多酚氧化酶活性受到抑制,其它土壤酶活性均随铝浓度的升高呈现先升后降的趋势,当Al浓度高达400mg/kg时,对酶呈现出抑制作用,影响达显著或极显著水平;在单独氟处理下,磷酸酶、尿酸酶活性变化不大,随着氟浓度的升高,除多酚氧化酶活性受抑制外,其余的酶活性也呈现出先升后降的趋势,当F浓度高达120 mg/kg时,对酶产生抑制作用,总体上氟的影响不如铝显著;铝、氟复合处理条件下,铝与氟之间联合作用对脲酶、蛋白酶、过氧化物酶、过氧化氢酶、多酚氧化酶、尿酸酶和抗坏血酸氧化酶活性产生了显著或极显著的交互效应,其作用方式因铝、氟处理浓度组合、酶及茶树品种的不同而不同。研究还发现,铝、氟对茶树根际土壤酶的交互效应与铝氟浓度的比值有密切关系,且不同的酶活性达最高时的铝氟比值基本相同,表明在茶树体内代谢中铝、氟之间存在一定的相关性。根际土壤酶活性在两个茶树品种间存在较大的基因型差异,尤其以酸性磷酸酶和抗坏血酸氧化酶最为显著,总体上白茶根际土壤酶对铝、氟及其交互作用较智仁早茶更敏感,两茶树品种之间土壤酶活性的差异与茶树根际过程密切相关。  相似文献   

15.
A rhizobox experiment was conducted to study the changes of various zinc (Zn) forms in rhizosphere and nonrhizosphere soils of maize (Zea mays L.) plants grown under well-watered and drought conditions. The tested soil was earth-cumulic orthic anthrosol sampled from the Shaanxi Province of China. The experiment was set at two levels of Zn, 0 and 5.0 mg Zn kg?1 soil, and at two treatments of soil water content, 45%–50% (drought) and 70%–75% (well watered) of soil water-holding capacity. A completely randomized factorial design (2 Zn treatments × 2 water levels × 3 replicates) was set up. Adequate soil water supply enhanced growth and Zn accumulation of maize plants. Applying Zn increased plant biomass and Zn content more notably under well-watered conditions rather than drought conditions. Soil Zn was defined as water-soluble plus exchangeable (WSEXC) Zn, carbonate-bound Zn (CA), iron–manganese oxide–bound Zn (FeMnOX), organic matter–bound Zn (OM), and residual Zn (RES) forms using the sequential extraction procedure. Most of Zn was predominantly in the RES fraction. Zinc application increased the contents of WSEXC Zn, CA Zn, and FeMnOX Zn in soil. When Zn was added to the soil, the concentrations of CA Zn within 0–2 mm and 0–4 mm apart from the central root compartment (CC) were greater than other zones under the conditions of adequate and limited soil water supplies, respectively. Zinc application also resulted in an accumulation of FeMnOX fractions at a distance of 2 mm from CC. The FeMnOX Zn content in this compartment increased with soil drought. Under well-watered conditions, dry-matter weight and Zn concentration of shoots presented better correlations with CA Zn and FeMnOX Zn fractions in and near the rhizosphere as compared with drought conditions. It is suggested that in an earth-cumulic orthic anthrosol, soil moisture conditions affect the transformation of the added Zn into the CA and FeMnOX fractions near the rhizosphere and their bioavailability to maize plants.  相似文献   

16.
砷甲基化过程作为微生物的砷抗性机制改变砷的毒性和移动性,对土壤砷污染控制有重要意义。砷抗性根际促生菌对砷胁迫下水稻生长产生积极影响,然而水稻根际菌的砷甲基化效率及其影响水稻砷胁迫的机制研究还较为缺乏。从砷污染稻田根际土中筛选出一株砷甲基化功能芽孢杆菌Bacillus sp. LH14,探究该菌株的砷甲基化效率、砷抗性和促生相关特性,和菌株接种对土壤砷形态、水稻生长和根际微生物相互作用的影响。结果表明,菌株LH14具有砷甲基化和挥发能力,34 h内将三价无机砷转化为甲基砷的效率为54.9%,主要形态为二甲基砷和三甲基砷。LH14接种显著提高了土壤中砷甲基转移基因(arsM)丰度,增加土壤溶液甲基砷浓度,表明LH14参与了土壤砷形态转化。LH14能在砷胁迫下产生吲哚-3-乙酸(IAA),菌株浸染显著增加高砷条件下种子萌发率、根和芽长及生物量。接种LH14对砷污染土壤中水稻植株生长有促进作用,可能与根际有益菌(例如Burkholderiaceae和Gemmatimonadaceae)相对丰度增加有关。所以,水稻根际存在砷甲基化功能植物促生菌,接种该菌改变水稻根际砷形态,并能产生植物激素和富集根际有益菌从而直接和间接地促进水稻生长,有利于缓解水稻砷胁迫,为砷甲基化功能菌应用于砷污染土壤修复和缓解植物砷胁迫提供理论支撑。  相似文献   

17.
Phosphorus (P) is commonly a limiting nutrient affecting crop yields in tropical cultivated systems, and a high P-sorption capacity in many of these soils can decrease the effectiveness of fertilizer use. Smallholder farmers, such as those in rural Haiti who do not have sufficient access to P fertilizers, may benefit from crops that are efficient at scavenging for P. To evaluate commonly grown and potentially useful plants for this purpose, a pot study was conducted in a controlled-environment chamber set to approximate ambient May–June conditions in Haiti's Central Plateau with seven treatments (six legume and one grass species) using soil from an Ustalf taken in the region. Velvet bean (Mucuna pruriens [L.] DC) produced the largest amount of biomass, though no difference in P uptake among treatments was observed. Phosphorus uptake and rhizosphere P were positively correlated, indicating plants with a larger capacity to solubilize P took up more P.  相似文献   

18.
根际pH对玉米利用磷酸单酯和双酯盐的影响   总被引:2,自引:1,他引:2  
【目的】土壤有机磷在土壤全磷中占有很大比重,是植物潜在的有效磷源,但必须通过磷酸酶的水解作用释放出无机磷才能被植物利用。土壤中有机磷的主要形式为磷酸单酯和磷酸双酯。本研究中,我们探讨了无菌条件下不同形态的氮源引起的根际pH变化如何影响植物对这两种有机磷的活化利用。【方法】采用琼脂无菌培养体系种植玉米,向玉米植株供应两种形态的氮源和磷源, 氮源为硝态氮和铵态氮,磷源为植酸钙和卵磷脂,植酸钙属于磷酸单酯盐,卵磷脂属于磷酸双酯盐。不同的供氮形态会导致根际pH变化,进而研究根际pH变化对磷酸单酯盐和磷酸双酯盐的活化利用所产生的影响。【结果】当给玉米供应铵态氮时,根际pH从5.5降至4.0; 供应硝态氮时,根际pH升至6.6。测定玉米根际的琼脂中根系分泌的磷酸单酯酶和磷酸双酯酶活性发现,磷酸单酯酶活性在pH 6.0~7.0之间最高,磷酸双酯酶活性在pH 7.0~8.0之间达到最高。无论以植酸钙还是卵磷脂为有机磷源,相对于铵态氮处理,硝态氮处理能够使根际保持较高的磷酸单酯酶或磷酸双酯酶活性。有机磷的水解过程由磷酸酶活性和底物有效性两个因素控制,而植酸钙的水解受根际pH影响很大,在一定pH范围内,植酸钙的溶解度随根际pH值降低而升高,有效态磷浓度的增加,使得磷酸酶的底物有效性提高。在供应铵态氮时,根际pH值降低,玉米对植酸钙的利用效率高于硝态氮处理,尽管供硝态氮时磷酸单酯酶活性更高。同时,在供应铵态氮条件下,植株对植酸钙的利用率要显著高于卵磷脂,原因在于虽然磷酸双酯酶和磷酸单酯酶活性较低,由于植酸钙的溶解度较大,它的底物有效性更高。因此,植酸钙处理中植株的磷含量更高。相反,在供应硝态氮时,植酸钙溶解度减小而两种磷酸酶活性较高,卵磷脂处理中植株的磷含量更高。【结论】土壤中有机磷的水解过程由磷酸酶活性和有机磷底物有效性两个因素控制,酶活性与根际pH密切相关。本研究说明土壤有机磷的活化必须首先转化为溶解于水溶液中的状态,才能作为磷酸酶的底物被催化水解。我国长期施用化肥导致北方土壤大范围酸化,这种酸化无疑对土壤固有或随有机物料进入农田的有机磷的活化利用是具有重要贡献的,应该在北方土壤养分管理中应加以考虑。  相似文献   

19.
干旱胁迫对玉米根系生长及根际养分的影响   总被引:16,自引:1,他引:16  
通过盆栽模拟干旱试验,测定了干旱胁迫下玉米根系生长情况和根际土壤中速效N、P、K的含量。结果表明,干旱胁迫抑制了玉米拔节期和抽雄-开花期玉米根系的生长,减弱了玉米根系的吸收能力。干旱胁追下玉米根际NH4^+-N、NO3^--N、速效P和速效K均发生根际富集现象。其中有效N和速效K含量高于正常供水.而速效P却呈现低于正常供水的趋势。干旱胁追抑制玉米根系生长、减弱根系吸收能力是玉米减产的重要原因。  相似文献   

20.
两个小麦品种对根际土壤中磷的吸收   总被引:1,自引:0,他引:1  
Inorganic soil phosphorus extractable with sodium bicarbonate(NaHCO3-Pi),soil pH and root hairs length and density in the rhizosphere of two winter wheat cultivars (Tritium aestivum L.cv.Shichum,Sleipner)grown on a high pH Chinese silt loam(52.7 mg NaHCO3-Pikg^-1) and a Danish sandy loam(43.4mg NaHCO3-Pi kg^-1)wer studied to assess how these wheat cultivars differed in phosphorus uptake.The rhizosphere soil pH of two wheat cultivars grown on the two soils were fairly unchanged with increasing distrance from the roo surface.However the root hairs of Shichun were 2.1 times longer than those of Sleipner,Root surface area(RSA) of Shichun increased by 192% due to root hairs whereas root hairs of Sleipner increased RSA by 68% only.Hence the root system of Shichun was in contact with more soil than that of Sleipner,even though Sleipner had a longer root,Grown at the lower pH and level of NaHCO3-Pi in the Danish soil Shichun absorbed more inorganic phosphorus than Sleipner whereas at the higher pH and level of NaHCO3-Pi in the Chinese soil there was no phosphorus uptake difference between the two wheat culivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号