首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In several areas in Northeast Thailand, evergreen and deciduous forests coexist under uniform terrain and climatic conditions. We compared depth and physical properties of soils between evergreen and deciduous forests in the Sakaerat Environmental Research Station to clarify what factor determines their distribution. The averaged soil depths were 79 ± 27 cm and 135 ± 58 cm in the deciduous and evergreen forests, respectively. The soils in the deciduous forests were relatively coarser in soil texture than those in the evergreen forests, particularly in the surface layers. The average available water capacity of the solum was lower in the deciduous forest soils (78 mm) than in the evergreen forest soils (123 mm). Compared with the evapotranspiration from the evergreen forest in the study area, the available water capacity of the evergreen forest soil was almost the same as the water deficit during the dry season (November–February), while that of the deciduous forest soil was lower and insufficient to maintain the evapotranspiration. These results suggest that the distribution of deciduous and evergreen forests in the study area was associated with soil water availability, which mainly depends on soil depth.  相似文献   

2.
Planting native trees may complement and accelerate natural regeneration and support recovery of biodiversity in degraded forests. Before planting trees, however, there is a need for species-specific site selection criteria. This study investigates the site requirements of a valuable but endangered rosewood species, Dalbergia oliveri, with the purpose of restoring degraded deciduous forest in northern Thailand.  相似文献   

3.
Two types of forests in Northeast China is divided in this paper, that is, the deciduous forests in the northern part and the deciduous—evergreen forests in the eastern part. Both distributions of the two types of forests have also been presented. Meanwhile, the development and succession as well as components of forests have been studied in detail. In the end, the vertical distribution of the deciduous forests have been shown, in which, the near—temperate cold temperate deciduous coniferous forests are distributing in the low elevation area between 450m—600m from the north to the south, the typical Siberian cold temperate deciduous coniferous forests are widely distributing from 450m–820m in the north to 600m-1050m in the south, the humid cold temperate deciduous coniferous forests can only be found in high elevation area from 820m–1100m in the north to 1050m–1380m in the south, the cold temperate deciduous coniferous open forests can seldom appear at the top of a few peaks.  相似文献   

4.
In several areas in Northeast Thailand, evergreen and deciduous forests coexist under uniform climatic conditions. To identify the factors that determine the distribution of these different forest types, we compared soil depth and soil physical properties between evergreen and deciduous forests, and monitored soil moisture conditions for a year in both forest types at the Sakaerat Environmental Research Station. The soil was significantly deeper under the evergreen forests (mean 97 cm) than under the deciduous forest (mean 64 cm). The soil under the evergreen forests retained much more water throughout the year than the soil under the deciduous forest, and there was also a clear tendency for the evergreen forests to occur in ravine areas, regardless of soil depth. It is possible that the evergreen trees can maintain transpiration during the dry season on thicker soils or in ravine areas, whereas shallower soils cannot provide enough water for these trees to maintain their evapotranspiration during the dry period. From the present study, we showed that soil water availability could be a significant factor determining the distribution of the deciduous and evergreen forests in our catchments.  相似文献   

5.
A major impediment to the sustainable management of tropical dry forests in Bolivia is the scarcity of natural regeneration of commercial timber tree species. Where regeneration is present, true seedlings of many species are outnumbered by vegetative sprouts from roots, broken stems, and the stumps of felled trees. This study evaluates the importance of resprouts promoted by logging operations for the regeneration of commercially important canopy tree species. The objectives of the study were: (1) to characterize stump and root sprouting behaviors of canopy tree species harvested for timber; (2) to quantify the effect of logging on relative abundances and growth rates of stump sprouts, root sprouts, and true seedlings; (3) to relate the species-specific probabilities of stump sprouting to stump diameter and stump height; and (4) to explore how sprouting varies with the ecological requirements of canopy tree species. The study was carried out 1–5 years after logging of a privately owned land in a Bolivian tropical dry forest. Twenty-seven of the 31 species monitored resprouted at least occasionally, among which Centrolobium microchaete (Leguminosae-Fabaceae) and Zeyheria tuberculosa (Bignoniaceae) were the most frequent stump sprouters, and Acosmium cardenasii (Leguminosae-Fabaceae) and C. microchaete were the most frequent root sprouters. In all species the number of sprouts declined with increasing stump diameter and stump height. The probability of stump resprouting differed among species but did not vary consistently with stump diameter, except in Z. tuberculosa in which it declined. Approximately 45% of juveniles <2 m tall of canopy tree species originated from root or stem sprouts. Light-demanding species tended to regenerate more from seeds and root sprouts than from stumps. Seedling densities were higher in microsites opened by logging, while root and stem sprouts were equally common across microsites. Given their abundance and the fact that root and stem sprouts at least initially grew faster than true seedlings, we conclude that vegetative regeneration in this tropical dry forest is an important mode of post-logging regeneration especially for species that regenerate poorly from seed. Resprout management should be considered as a potentially effective strategy for the procurement of regeneration following logging, especially for species that do not readily recruit from seed.  相似文献   

6.
We investigated soil physical properties in three forest types in tropical lowland monsoon forests in central Cambodia under the same climatic conditions, i.e., Kanhaplic Haplustults in dry evergreen forest (KH-E), Arenic Haplustults in dry deciduous forest (AH-D), and Arenic Ultic Alorthods in mixed evergreen–deciduous forest (AA-M), to clarify the relationship between forest types and soil physical properties. The clay content was correlated with water content at ψ = −9.8 and −1500 kPa (WC10 and WC1500), available water capacity (AWC), and the van Genuchten (vG) parameter N (P < 0.01). vG parameter N was in the order AH-D > AA-M > KH-E whereas vG parameter α had a high value in KH-E soil at 0–100 cm in depth. The cumulative AWC (AWCcl, mm) at a soil depth of 0–200 cm was higher in the AH-D than in the KH-E, and was not considered a major factor affecting the distribution of different forest types under the same climatic conditions. The unsaturated hydraulic conductivity (K) at 0–100 cm in depth, estimated by use of models, was higher in AH-D than in KH-E mostly at matric potential ψ > −10 kPa. The low K in KH-E at ψ > −10 kPa was considered favorable for evergreen trees to retain the soil water for the transpiration in the dry season, and the matric potential in KH-E showed more gentle decreases in the early dry seasons than AH-D. Thus the differences in K among generally sandy soil types could possibly affect the establishment of different forest types in the study area with the same climate.  相似文献   

7.
The effects of dry deposition, canopy leaching, precipitation ion concentration, and precipitation H+ concentration on net throughfall flux (NTF, throughfall minus bulk precipitation) were evaluated on a seasonal basis by using a multiple regression analysis approach based on an observation period of 4 years in Shaoshan subtropical mixed evergreen forest, south-central China. Regression analysis results indicated that the estimated canopy exchange flux was the dominant factor regulating the NTF and the calculated dry deposition was a minor term. The seasonal dry deposition of base cations accounted for 15%–43% of the NTF. The NTF analysis showed that K+, Ca2+, Mg2+, Na+, and weak acids in throughfall were derived from foliar leaching and the canopy uptakes of H+, NH4 +, and NO3 were from precipitation. The retention rate of proton (H+ and NH4 +) in the canopy was close to the canopy leaching rate of base cations when corrected for weak acids because weak acid-induced canopy leaching did not exchange with protons, which suggested that the canopy leaching processes neutralized acid precipitation in Shaoshan forest.  相似文献   

8.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

9.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

10.
This study was conducted to compare the allometric equations and biomass expansion factors (BEFs) of six dominant evergreen broad-leaved trees (Camellia japonica L, Castanopsis sieboldii Hatus, Quercus acuta Thunb, Q. glauca Thunb, Machilus thunbergii S. et Z., and Neolitsea sericea Koidz) in subtropical forests. A total of 86 trees were destructively sampled to quantify the aboveground biomass of each tree component (i.e., leaves, branches, and stem). Species-specific or generalized allometric equations and species-dependent BEFs were developed for each tree component of the six broad-leaved forest trees. Species-specific allometric equations were significant (P < 0.05), with the diameter at breast height (DBH) accounting for 68–99% of the variation, whereas generalized allometric equations explained 64–96% of the variation. The values of stem density ranged broadly from 0.49 g cm?3 for C. sieboldii to 0.79 g cm?3 for Q. glauca, with a mean value of 0.68 g cm?3. The BEFs were significantly (P < 0.05) lower for C. sieboldii (1.25) than for M. thunbergii (2.02). Stem density and aboveground BEFs had a significant negative relationship with tree ages. The results indicate that species-specific allometric equations and species-dependent BEFs are applicable for obtaining accurate biomass estimates of subtropical evergreen broad-leaved forests.  相似文献   

11.
应用植物群落学方法,调查分析了铜鼓岭热带常绿季雨矮林的群落结构特征。结果表明,该群落优势树种为黄椿木姜(Litsea variabilis)、海南大风子(Hydnocarpus hainanensis)、滨木患(Arytera littoralis)、无患子(Sapindus mukorossi)和禾串树(Bridelia balansae)等。立木胸径及树高结构分析表明,该群落中2.5~7.5 cm胸径级的个体占有相当高的比例,树高2~8 m各级分布较均匀,整个群落处于稳定发展当中。分别运用y=aD+b和ω=aD+b对优势树种的胸径与树高和冠幅之间的关系进行拟合,显著性检验结果显示,除禾串种群外,各直线方程均存在极显著的相关性,因此今后的调查中可用胸径来估测树高和冠幅。  相似文献   

12.
In order to explore the release of nutrients and the effects of global warming on the decomposition rate of forest litter, an experiment is designed to reciprocally decompose forest foliar litter in two sites across climatic zones: Mt. Jianfengling in Hainan Province in the tropics and Mt. Dinghushan in Guangdong Province in the subtropics. The two sites have similar altitudes, soil types, annual mean rainfall and seasonality of dry and wet. The main difference between these two sites is the annual mean temperature with the difference of 3.7°C. Foliar litters of 10 native dominant tree species have been collected respectively from the two sites and divided into single-species litter and mixed litter. They are decomposed reciprocally in the two sites. The results indicate that litter decomposes in the tropical site 1.36–3.06 times more rapidly than in the subtropical site. Apparent Q 10, calculated on the basis of the temperature difference between the two sites, ranges from 3.7 to 7.5. The return amount of N, P and C will increase by 32.42, 1.033 and 741.1 kg/hm2, respectively in Mt. Dinghushan in the first year’s litter decomposition under the prevailing temperature condition. Only in Mt. Dinghushan is the correlation between decomposition rate constant and initial litter quality high and significant in the ratio of lignin to N, lignin, the ratio of lignin to P, HLQ and C. This is not the case at Mt. Jianfengling. __________ Translated from Journal of Beijing Forestry University, 2005, 27(1): 24–32 [译自: 北京林业大学学报, 2005, 27(1): 24–32]  相似文献   

13.
Hardwick  Kate  Healey  John R.  Elliott  Stephen  Blakesley  David 《New Forests》2004,27(3):285-302
Accelerated natural regeneration (ANR) is a relatively cheap method of reforestation, which encourages natural establishment of indigenous trees and shrubs. It requires a low input of labour, but a high input of ecological information. In this paper, the knowledge required to predict and manipulate the natural regeneration of seasonal tropical forest is reviewed and areas in need of further research are identified. Regeneration will be influenced by five groups of potentially limiting factors; site resources (soil and microclimate); competition with weeds; site disturbance; occurrence of established woody plants or their propagules; seed dispersal by wild animals and birds. This paper considers each of these, their interactions with seasons, and each other. Collation of existing information on these topics, combined with the suggested further research, should facilitate the creation of tools that will enable practitioners to judge the regeneration potential of sites and to select the most appropriate ANR techniques.  相似文献   

14.
Uncertainties in the rate of biomass variation with forest ageing in tropical secondary forests, particularly in belowground components, limit the accuracy of carbon pool estimates in tropical regions. We monitored changes in above- and belowground biomass, leaf area index (LAI), and biomass allocation to the leaf component to determine the variation in carbon accumulation rate with forest age after shifting cultivation in Sarawak, Malaysia. Nine plots in a 4-year-old forest and fourteen plots in a 10-year-old forest were monitored for 5 and 7 years, respectively. Forest and plant part biomass were calculated from an allometric equation obtained from the same forest stands. Both above- and belowground biomass increased rapidly during the initial decade after abandonment. In contrast, a much slower rate of biomass accumulation was observed after the initial decade. LAI also increased by approximately double from the 4-year-old to 10-year-old forest, and then gently increased to the 17-year-old forest. We also found that allocation variation in leaf biomass and nitrogen was closely related to the rate of biomass accumulation as a forest aged. During the first decade after abandonment, a high biomass and nitrogen allocation to the leaf component may have allowed for a high rate of biomass accumulation. However, reduction in those allocations to leaf component after the initial decade may have helped to suppress the biomass accumulation rate in older secondary forests. Roots accounted for 14.0–16.1% of total biomass in the 4–17-year-old abandoned secondary forests. We also verified the model predicted values for belowground biomass by Cairns et al. (1997) and Mokany et al. (2006), although both models overestimated the values throughout our data sets by 45–50% in the 10-year-old forest. The low root:shoot ratio in the secondary forests may have caused this overestimation. Therefore, our results suggest that we should modify the models to estimate belowground biomass considering the low root:shoot ratio in tropical secondary forests.  相似文献   

15.
Forest recruitment is the outcome of local- and regional-scale factors such as disturbances and climate. The relative importance of local- and regional-scale factors will determine the spatial scale at which temporal pulses of recruitment occur. In seasonal tropical forests, where the annual dry-season is a critical bottleneck to seedling survival, multi-year periods of relatively cool, wet dry seasons may be required for successful tree recruitment. Consequently, when such conditions are present, region-wide synchronisation of recruitment may occur. To examine the case for regional synchronisation of forest dynamics in the seasonal tropical pine forests of northern Thailand, we investigated forest age structures at three spatial scales: stand, site and region. We compared forest age structures with instrumental climatic records beginning in 1902. We found significant statistical evidence of synchronous recruitment at the stand- and site-scales, but not at the regional-scale. While correlations between recruitment and climate were not statistically significant, recruitment success was often linked to favourable climatic conditions. For example, recruitment at all sites was associated with multi-year periods of cool-wet dry seasons. The lack of significant correlations between recruitment and climate appears to reflect complex interactions among local disturbance history, regional climate variability and pine recruitment.  相似文献   

16.
Dry forests represent the most endangered ecosystem in tropical regions and continue to be one of the most sought after environments for human colonization, development and production. In spite of this, dry forests are one of the least well studied tropical habitats. This special issue is dedicated to reviewing much of the information that exists about tropical dry forest in the Americas. The introduction summarizes the articles presented herein, highlighting management strategies that are suggested throughout the special issue that may be useful for conserving tropical dry forest environments.  相似文献   

17.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

18.
The advent of modern forces and the changes in socioeconomic patterns of forest dwellers have increased the pressures on the forests. In order to mitigate such pressures and also to protect the forests and wildlife the model of protected areas networks has shifted and enhanced such pressures in the unprotected natural forests due to several reasons. Being a low profile category of protected status and continuous human settlements, the present study highlights the case of dry deciduous forests of Sarguja district of Chhattisgarh state of India. The major objectives of this study were to quantify the status of forests and wildlife and also to determine the extent of anthropogenic disturbances faced by the dry deciduous forests of central India. Transect and silent drive count methods were used for sampling wildlife and quadrat method was used for sampling vegetation. Besides, the local uses of various forest produces were also studied in view of understanding the people dependency on forests. The forest vegetation, in the study area, was pre-dominated by Shorea robusta, which had Madhuca indica, Diospyrus melanoxylon and Buchnania lanzan as the major companion species. The forest had either the high girth class mature tree species or the saplings. The low vegetation cover and density were due to the high anthropogenic pressures mainly in the form of heavy livestock grazing and collection of ethnobotanically important species. The study though reveals that the area is not rich in wildlife and the forest is fragmented, the area still supports some important species, which include many rare and endangered plants and animals. The findings of this study have been discussed in view of the management and conservation of the forest and wildlife in the dry deciduous forests.  相似文献   

19.
The role of forest fires in the soil dynamics and global carbon cycle has not been comprehensively studied in tropical forests as the effects of fire on tropical forest soils can be extremely variable. This study was aimed to understand how repeated fires affect physical and chemical properties of soil in a tropical dry deciduous forest and alter soil fertility and health. The study was carried out in the dry deciduous forest of Mudumalai Tiger Reserve. Soil samples were collected from unburned (B0) to six-time burned (B6) plots. Samples were collected from each plot from three different depths viz. 0–10 (Top), 10–20 (Middle), and 20–30 cm (Bottom) and analyzed for soil physical and chemical properties. Soil pH, EC, WHC decreased with increasing fire frequencies while bulk density increased. Organic Carbon, Total N, and available P decreased with increasing fire frequencies whereas extractable K initially increased but decreased with the very high frequency of fires. NO3?N slightly decreased with high fire frequencies but NH4?N decreased significantly with increasing fire frequency. These results provide a new insight regarding the influence of repeated fires on soil that will be valuable to understand the effect of fire on the recovery of soils and nutrient dynamics.  相似文献   

20.
Understanding tropical forest succession is critical for the development of tropical forest conservation strategies worldwide, given that tropical secondary forests can be considered the forests of the future. Tropical dry forests (TDF) are among the most threatened tropical ecosystems, there are more secondary forests and forest restoration efforts that require a better understanding of successional processes. The main goal of this synthesis for this special issue on the ecology and management of tropical dry forests in the Americas is to present a summarized review of the current knowledge of the ecology and management implications associated to TDF succession. We explore specific issues associated to tropical dry forest succession with emphasis on the use of chronosequences, plant diversity and composition, plant phenology and remote sensing, pollination, and animal–plant interactions; all under the integrating umbrella of ecosystem succession. We also emphasize the need to conduct socio-ecological research to understand changes in land-use history and its effects on succession and forest regeneration of TDF. We close this paper with some thoughts and ideas associated with the strong need for an integrating dimension not considered until today: the role of cyberinfrastructure and eco-informatics as a tool to support sound conservation, management and understanding of TDF in the Americas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号