首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the effects of thinning (0, 20 and 30 % extraction of basal area) and canopy type (pine–beech vs. pine plots, beech accounting for 12 % of total basal area) on radial growth of dominant and codominant Scots pine at inter-annual scale and on microclimatic conditions, radial growth and xylogenesis 9 years after thinning at intra-annual scale. Thinning weakly affected pine growth, which was enhanced 3 years after harvesting. Over time, a gradual reduction in pine growth in mixed canopy relative to pure canopy occurred only in unthinned plots apparently due to beech expansion. Indeed, 9 years after thinning, a higher seasonal radial increment and a greater number of tracheids were produced under pine canopy in the unthinned plots, whereas no differences between canopy types were observed in the thinned plots. Radial increment and tracheid production were mainly affected by tree water status (air and soil humidity, throughfall). The differences of tree water status caused by treatments, and plausibly disparities in tree size and tree-to-tree competition, were the main drivers explaining the patterns observed for radial increment and xylogenesis. Our results suggest that the negative effects of beech competition on Scots pine growth in similar mixed forest may be controlled to some extent by thinning.  相似文献   

2.
不同强度间伐对长白山天然林林下植物多样性的影响   总被引:1,自引:0,他引:1  
对吉林森工集团松江河林业局辖区内的阔叶红松林、杂木林和杨桦林采取30%~40%(T1)、20%(T2)株数强度的均匀间伐处理,以不间伐处理为对照(CK),对间伐2 a后林下植物木本、草本植物进行调查,采用Simpson、Shannon-Wiener多样性指数和Pielou均匀度指数进行植物多样性分析,探讨不同强度间伐对3个林型林下植物多样性的影响。研究结果表明:T1间伐后3个林型的物种丰富度均有增加(杂木林木本植物例外),T2间伐后杨桦林木本植物丰富度降低,草本植物丰富度增加。两种间伐处理均增加阔叶红松林木本植物多样性,T1处理尤为明显。T1处理增加杂木林和杨桦林木本植物多样性,而T2间伐处理有较弱的降低作用。两种间伐处理均降低阔叶红松林和杂木林草本植物多样性,与强度无明显关系。随着间伐强度的增加杨桦林草本植物多样性增大。在长白山天然林中,较大间伐强度T1(30%~40%)能够有效提高植物多样性。  相似文献   

3.
Competition is a major determinant of plant growth and is often used in studies of tree growth and species coexistence. However, these approaches are usually temporally static, i.e., assessed at a single point or period in time. While constantly changing forest conditions due to natural and human-induced disturbances potentially alter competition among individuals, static approaches cannot qualify the temporal variability of competitive interactions. Here we present a longitudinal analysis of competitive interactions among trees and discuss the implication of our results for ecological interpretation.Spatially-explicit tree growth data were obtained from 18 study plots (0.4 ha each) in sugar maple (Acer saccharum Marsh.) stands in Quebec, Canada. During the studied period (1980-2003), these stands had been disturbed by insect outbreaks (forest tent caterpillar, Malacosoma disstria Hubner) and by commercial partial harvest. We analyzed radial growth rates (outcome of competition) on an annual basis and as a function of tree biology (bole diameter, crown position), competition (above- and belowground competition from neighbours) and environmental conditions (light availability, harvest disturbance).Competitive interactions changed throughout the studied period. Canopy disturbance from partial harvest interacted with defoliators and influenced competition symmetry by favoring smaller trees.Competitive interactions seemed to have switched from below- to above-ground following canopy recovery after harvest. Release from competition due to partial harvest increase neighbourhood size (radius of effective competition) and enhanced the competitive pressure from larger individuals.The temporal variability in parameter estimates may be used for setting confidence intervals on competitive success (growth rates), thereby yielding a more robust basis for ecological interpretation. Our results also show that temporal variability in competitive interactions could contribute to the maintenance of high tree species diversity and structural complexity in some ecosystems by temporally altering species-specific responses to environmental change and disturbance.  相似文献   

4.
Concerns about the long-term sustainability of overstocked dry conifer forests in western North America have provided impetus for treatments designed to enhance their productivity and native biodiversity. Dense forests are increasingly prone to large stand-replacing fires; yet, thinning and burning treatments, especially combined with other disturbances such as drought and grazing, may enhance populations of colonizing species, including a number of non-native species. Our study quantifies plant standing crop of major herbaceous species across contrasting stand structural types representing a range in disturbance severity in northern Arizona. The least disturbed unmanaged ponderosa pine stands had no non-native species, while non-native grasses constituted 7–11% of the understory plant standing crop in thinned and burned stands. Severely disturbed wildfire stands had a higher proportion of colonizing native species as well as non-native species than other structural types, and areas protected from grazing produced greater standing crop of native forbs compared to grazed unmanaged stands. Standing crop of understory plants in low basal area thinned and burned plots was similar to levels on wildfire plots, but was comprised of fewer non-native graminoids and native colonizing plants. Our results also indicate that size of canopy openings had a stronger influence on standing crop in low basal area plots, whereas tree density more strongly constrained understory plant standing crop in dense stands. These results imply that treatments resulting in clumped tree distribution and basal areas <10 m2 ha−1 will be more successful in restoring native understory plant biomass in dense stands. Multiple types and severity of disturbances, such as thinning, burning, grazing, and drought over short periods of time can create greater abundance of colonizing species. Spreading thinning and burning treatments over time may reduce the potential for non-native species colonization compared to immediately burning thinned stands.  相似文献   

5.
Pruning allows knot-free timber to be obtained, thereby increasing the value of the highest-value wood products. However, the effect of pruning on growth is under discussion, and knowledge about the tree response to the simultaneous development of thinning and pruning is scarce. The objective of this study was to analyze the effect of the interaction of thinning and pruning on tree and stand level and the annual radial growth of two pine species native to Mediterranean mountains. We used long-term data of three trials installed in pine stands where several combinations of pruning and thinning were developed. Five inventories were carried out for each trial, and the mean dasometric features of the different treatments were compared using linear mixed models including a competition index. In addition, we collected cores from ten trees per plot in order to evaluate the annual response of trees to the thinning and pruning. We analyzed the annual radial growth using a semiparametric approach through a smooth penalized spline including rainfall and temperature covariates. Pruning did not show any effect on growth. However, larger diameter and increased annual radial growth were found in thinned plots, both with and without pruning, as compared to unthinned plots. Also, we found significant effects of climate on annual radial growth. We recommend the application of thinning and pruning in stands of Mediterranean mountains in order to get knot-free timber since growth reduction was not found in thinned stands.  相似文献   

6.
Plantations cover a substantial amount of Earth's terrestrial surface and this area is expected to increase dramatically in the coming decades. Pinus plantations make up approximately 32% of the global plantation estate. They are primarily managed for wood production, but have some capacity to support native fauna. This capacity likely varies with plantation management. We examined changes in the richness and frequency of occurrence of bird species at 32 plots within a Pinus radiata plantation (a management unit comprising multiple Pinus stands) in south-eastern Australia. Plots were stratified by distance to native forest, stand age class and thinning regime. We also assessed the landscape context of each plot to determine relationships between bird assemblages and stand and landscape-level factors. Bird species richness was significantly higher at plots ≥300 m from native forest and in mature (∼20 years since planting) and old (∼27 years since planting) thinned pine stands. We were able to separate the often confounding effects of stand age and thinning regime by including old stands that had never been thinned. These stands had significantly fewer species than thinned stands suggesting thinning regime, not age is a key factor to improving the capacity of pine plantations to support native species (although an age × thinning interaction may influence this result). At the landscape level, species richness increased in pine stands when they were closer to native riparian vegetation. There were no significant differences in species composition across plots. Our study indicates the importance of stand thinning and retention of native riparian vegetation in improving the value of pine plantations for the conservation of native fauna.  相似文献   

7.
Demand for alternative energy sources has led to increased interest in intensive biomass production. When applied across a broad spatial extent, intensive biomass production in forests, which support a large proportion of biodiversity, may alter species composition, nutrient cycling and subsequently biodiversity. Because forest thinning and fuels treatment thinning are viewed as possible wide-spread biomass harvest options, it is important to understand what is known about forest biodiversity response to these practices and what additional information is needed by forest managers and policymakers. Therefore, we summarized documented relationships between forest thinning treatments and forest biodiversity from 505 biodiversity effect sizes (incl. taxa and guild abundance and species richness measures) from 33 studies conducted across North America. We used meta-analysis to summarize biodiversity response by region, taxa and harvest treatments. Biodiversity responses included species richness, diversity, abundance of taxa or groups of species (guilds) and abundance of individual species for birds, mammals, reptiles, amphibians, and invertebrates. Forest thinning treatments had generally positive or neutral effects on diversity and abundance across all taxa, although thinning intensity and the type of thinning conducted may at least partially drive the magnitude of response. Our review highlights the need for more research to determine effects of thinning on amphibians and reptiles and manipulative experiments designed to test the effects of biomass removal on biodiversity.  相似文献   

8.
Green-tree retention systems are an important management component of variable retention harvests in temperate zone coniferous forests. Residual live trees (“legacy trees”) provide mature forest habitat, increase structural diversity, and provide continuity in the regenerating stand. This study was designed to test the hypotheses that, at up to 8 years after harvest, abundance and species diversity of communities of (i) understory plants and (ii) forest-floor small mammals, and (iii) relative habitat use by mule deer (Odocoileus hemionus), will decline with decreasing levels of tree retention. Communities of plants and forest floor small mammals were sampled in replicated clearcut, single seed-tree, group seed-tree, patch cut, and uncut forest sites in mixed Douglas-fir (Pseudotsuga menziesii)—lodgepole pine (Pinus contorta) forest in southern British Columbia, Canada from 2000 to 2003 (5–8 years post-harvest). Habitat use by mule deer was measured during summer and winter periods each year from 1999 to 2003 in these same sites.  相似文献   

9.
Silvicultural practices that provide a wide variety of vegetative composition and structure (habitats) in young stands should help manage for biological diversity across forested landscapes. This study was designed to test the hypotheses that: (i) abundance and diversity of stand structure attributes (species diversity and structural diversity of herb, shrub and tree layers) and forest floor small mammal communities, and (ii) relative habitat use by large herbivores, will increase from unthinned to conventionally thinned to chemically thinned stands of young lodgepole pine (Pinus contorta) forest. Replicate study areas were located near Summerland, Kelowna and Williams Lake in south-central British Columbia, Canada. Each study area had three treatments: a conventionally thinned, a chemically thinned and an unthinned stand. Pre-commercial thinning was conducted in 1993. Coniferous stand structure and understory vegetation were measured prior to thinning in 1993 and 5 years later in 1998. Small mammal populations were sampled intensively from 1993 to 1998. Relative habitat use by large herbivores was sampled in 1998.

Our results indicate that chemical thinning of young lodgepole pine stands produced an aggregated pattern of crop trees compared with stands subjected to conventional thinning. Diameter growth of crop trees in the chemically thinned stands was similar to that in the conventionally thinned, but also to that in unthinned stands. Although horizontal stratification (aggregates of trees) was enhanced, vertical stratification (structural diversity of vegetation) was less in the chemically than conventionally thinned stands. Abundance and diversity of understory vegetation and small mammal communities were generally unaffected by stand thinning in these particular installations. Relative habitat use by mule deer (Odocoileus hemionus) occurred in a gradient from highest in the conventionally thinned stand to lowest in the unthinned stand. Habitat use by snowshoe hares (Lepus americanus) tended to have the opposite trend. Moose (Alces alces) exhibited no difference in habitat use among stands. Thus, although there were few differences among treatment stands, chemical thinning could be used to develop an aggregated pattern of crop trees in pre-commercially thinned stands to maintain habitat for herbivores such as snowshoe hares and mule deer. Understory plant and forest floor small mammal communities would be maintained in these stands as well.  相似文献   


10.
Analyzing and understanding the structure and growth dynamics of semi-natural plantations is useful for their management. Since 1987, 16 plots with 4 treatments (CT: control; LT: light thinning; MT: medium thinning; and HT: heavy thinning) by 0, 20, 30 and 40% of basal area removal, respectively, and four replications were established in semi-natural larch-spruce-fir forests in northeast China. The structure and growth dynamics of semi-natural larch-spruce-fir stands and the effects of thinning on the growth, structure and diversity were examined. A mixed model repeated measures analysis of variance (RMANOVA) was used to test the effects of treatment and time.

Results showed that differences in periodic annual increment (PAI) of stand basal area and volume and the individual diameter and volume among treatments changed over time in a complex statistical interaction. Thinning, however, had a significant effect on growth at tree and stand levels 12 years after thinning while the PAI of the diameter, basal area and volume was positively correlated with thinning intensity. No significant differences were found in the total stand yield among treatments. Composition of tree species group (larch, other conifers and deciduous trees) during monitoring years did not change significantly. Moreover, no significant differences were observed in tree species and size diversity among treatments in the years following thinning. Both thinning and control plots had similar understory plant diversity after the 12 year period. Univariate point pattern analysis revealed that clumped and random distributions were dominant for tree species groups in this study. The current species composition and regeneration dynamics within these semi-natural plantations suggested a development towards mixed coniferous and broad-leaved forests. Management implications for the transformation from larch plantations towards mixed broad-leaved Korean forests with a more diverse structure, the climax vegetation in this region, were discussed.  相似文献   


11.
Maintenance of biodiversity in commercial forests has become a main goal in forestry, and several new management principles to reach that goal have been introduced lately. For example, in even-aged forestry, tree retention (leaving a proportion of trees standing in clear-cut sites) is widely used to increase the structural diversity and the amount of dead wood in forests. However, the cost-efficiency of the new management principles is poorly studied. To increase the amount of dead wood, an alternative way could be a change in the thinning regime, so that the self-thinning builds up of woody debris of a growing stand. We used long-term (200?years) simulations to compare ecological and economical effects of the two alternative management practices to increase the amount of dead wood in forest stands: (1) green tree retention and (2) growing stands unthinned. We simulated stand growth and management of 12 pine and 12 spruce stands that represented sites in different parts of Finland. We found that growing stands unthinned produced about 5–6?times more dead wood than retention with 20 trees left per hectare. In terms of economical loss, leaving stands unthinned reduced the net present value of harvest revenues less than 20%. Consequently, leaving stands unthinned offers a cost-effective option to increase the amount of dead wood in commercial forests. The effects of unthinned management were, however, dependent on thermal sum and initial stand density, indicating that biodiversity-oriented management practices should be designed for local conditions.  相似文献   

12.
Burnt wood remaining after a wildfire is a biological legacy with important implications for habitat structure, ecosystem regeneration, and post-fire management. Knowledge of the time required for snags to fall is thus a key aspect for planning forest restoration. In this study, we analyze the fall rate of burnt trees in a Mediterranean pine reforestation. Three plots of 18–32 ha were established after a fire across an elevational gradient spanning from 1400 to 2100 m a.s.l., and snag fall rate was measured on a yearly basis using an experimental setup that considered two levels of a thinning treatment: unthinned (where no post-fire management was conducted and all the snags were left standing after the fire) and thinned (where 90% of the trees were cut after the fire and left on the ground). All the snags remained standing during the first and second winter, and thereafter, they collapsed quickly until reaching 100% after 5.5 years. Snags in low-density stands resulting from thinning fell faster than in unthinned stands, but the differences were minor. There was a negative effect of tree diameter on the rate of collapse, especially in the unthinned treatment, but the effect of diameter was minor too. There was no effect of the elevational gradient on fall rate despite patent differences in climatic conditions and pine species across plots. The results support the contention that post-fire fall rate in dense pine plantations in Mediterranean mountains can occur quickly after the second winter and may show little variation across environmental gradients.  相似文献   

13.
Forest management strongly influences the interactions between ungulates and their food resources. Different ungulate-adapted measures have been proposed in forestry to improve forage availability or to reduce browsing damage. However, the potential and feasibility of such measures are inadequately known. We studied the effects of harvest timing and slash treatment in final felling and commercial thinning on the availability of Scots pine Pinus sylvestris forage and its use by ungulates during winter in the Swedish boreal forests. Pellet group counts showed that moose (Alces alces) was the dominating species using the post-harvest stands. Under conventional slash treatment, final felling stands held on average 226 kg pine forage ha?1 after harvesting and commercial thinning stands 137 kg ha?1. Ungulate-adapted slash treatment increased the available forage biomass by 20 %, but had no significant effect on consumption of forage by ungulates. Time since harvest had the strongest effect on forage consumption; for example, under conventional slash treatment, there was a tenfold increase in consumption (3 vs. 33 kg ha?1) following final felling as exposure time increased from 2–3 to 4–5 months. Consumption was higher in thinned stands than in final felling stands for the first 3 months but not later. To increase ungulate use of the forage made available at harvest, pine-dominated stands should be harvested in the late autumn or early in the winter.  相似文献   

14.
Commercial thinning enables forest managers to meet timber production objectives. Thinning reduces tree density to alleviate competition for resources and favour growth of selected tree species. However, in doing so, thinning can homogenize the composition of mixed-species forests and raise biodiversity issues. There is increasing evidence that species richness can lead to higher productivity through a complementarity effect. Hence, thinning that would maintain species diversity of mixed-species forests could enhance stand productivity and help forest managers to reconcile timber production objectives and biodiversity issues. The objective of this study was to compare post-thinning stand production, experimentally over 10 years, in mixed and monospecific stands of black spruce (Picea mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.). The post-thinning stand production curve of the mixed stand converged toward that of the unthinned mixed stand while the production curves of the thinned and unthinned monospecific stands remained parallel. The convergent productivity of the mixed stand could be explained by a positive interaction between effects of thinning and niche complementarity. We propose that thinning that maintains species diversity of mixed stands could help forest managers who are implementing ecosystem management to reconcile timber production objectives with biodiversity issues.  相似文献   

15.
Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine, the pine engraver beetle, Ips pini (Say), Ips calligraphus (Germar), Ips latidens (LeConte), Ips knausi Swaine and Ips integer (Eichhoff) were the primary bark beetle species associated with ponderosa pine mortality. In this study we examine stand conditions and physiographic factors associated with bark beetle-caused tree mortality in ponderosa pine forests across five National Forests in Arizona. A total of 633 fixed-radius plots were established across five National Forests in Arizona: Apache-Sitgreaves, Coconino, Kaibab, Prescott, and Tonto. Prior to the bark beetle outbreak, plots with mortality had higher tree and stocking compared with plots without pine mortality. Logistic regression modeling found that probability of ponderosa pine mortality caused by bark beetles was positively correlated with tree density and inversely related with elevation and tree diameter. Given the large geographical extent of this study resulting logistic models to estimate the likelihood of bark beetle attack should have wide applicability across similar ponderosa pine forests across the Southwest. This is particularly true of a model driven by tree density and elevation constructed by combining all forests. Tree mortality resulted in significant reductions in basal area, tree density, stand density index, and mean tree diameter for ponderosa pine and for all species combined in these forests. Most of the observed pine mortality was in the 10–35 cm diameter class, which comprise much of the increase in tree density over the past century as a result of fire suppression and grazing practices. Ecological implications of tree mortality are discussed.  相似文献   

16.
Competition for canopy space is a fundamental structuring feature of forest ecosystems and remains an enduring focus of research attention. We used a spatial neighborhood approach to quantify the influence of local competition on the size of individual tree crowns in north-central British Columbia, where forests are dominated by subalpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta) and interior spruce (Picea glauca × engelmanii). Using maximum likelihood methods, we quantified crown radius and length as functions of tree size and competition, estimated by the species identity and spatial arrangement of neighboring trees. Tree crown size depended on tree bole size in all species. Given low levels of competition, pine displayed the widest, shortest tree crowns compared to the relatively long and narrow crowns found in spruce and fir. Sensitivity to crowding by neighbors declined with increasing tree height in all but the pine crown radius model. Five of the six selected best models included separate competition coefficients for each neighboring tree species, evidence that species generally differ in their competitive effects on neighboring tree crowns. The selected crown radius model for lodgepole pine, a shade-intolerant species, treated all neighbors as equivalent competitors. In all species, competition from neighbors exerted an important influence on crown size. Per-capita effects of competition across different sizes and species of neighbors and target trees varied, but subalpine fir generally displayed the strongest competitive effects on neighbors. Results from this study provide evidence that species differ both in their response to competition and in their competitive influence on neighbors, factors that may contribute to maintaining coexistence.  相似文献   

17.
Thinning of Korean pine (Pinus koraiensis Sieb. et Zucc.) is used to facilitate timber and cone production. The present study in Northeast China investigated the effects of thinning intensity on individual tree growth, temporal variation in cone yield, and seed quality in Korean pine plantation. In 2005, five thinning intensity levels (none, extreme, heavy, moderate and light) were set in 15 permanent plots in a 32-year-old Korean pine plantation at Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province. We recorded tree growth and seed cone production from 2013 to 2016, i.e., from 8 to 11 years after thinning. Except for height growth, thinning increased tree growth (diameter at breast height and crown size) and improved cone yield. The extreme thinning treatment (to 300 trees per hectare) resulted in the largest tree diameter, tree volume, crown size and 4-year cone production per tree. The highest cone yield per tree in the mast year (2014) was observed when stands were thinned to 500 trees per hectare (heavy thinning). Although the best cone and seed quality and the largest cone and seed mass per tree were recorded in the heavily thinned stand, no significant differences were found between heavy and moderate thinning stands (750 trees per hectare). At the stand level, the moderately thinned stand had the highest basal area, stock volume and seed cone production per stand. Our results suggest that thinning to 750 trees per hectare will improve timber and cone productivity in 40-year-old P. koraiensis stands.  相似文献   

18.
Tree diversity in West Africa is threatened by intensified land uses and salinization,and farmers' role in conservation of tree species is unclear.We hypothesized that farmers contribute to conservation of tree diversity through protection of trees in their agroforestry landscapes and compared the diversity and structure of the tree vegetation across landscape classes.Inventories were carried out in three villages in the Groundnut Basin in Senegal,assessing tree diversity,density and crown cover.Tree diversity as assessed by species accumulation curves was high in forests,but cultivated landscapes had comparable or almost comparable diversity,especially in the cases where the forest was planted or was affected by charcoal production.However,the occurrence of exotic species was higher in cultivated parts of the landscape,and although many species were in common,ordination plots indicated that forests and cultivated landscapes to some degree had different species composition.Salinity had a strong influence on vegetation,not only in the tans(salt marshes) but also across the other landscape classes.In conclusion,agroforestry landscapes in the three villages harbor considerable tree diversity,but insufficient to fully conserve the tree species.We argue that informing and including farmers in tree management in the region will contribute to overall conservation of tree genetic resources.  相似文献   

19.
We studied the combined effects of thinning on stand structure, growth, and fire risk for a Scots pine thinning trial in northern Spain 4 years following treatment. The thinning treatments were: no thinning, heavy thinning (32–46% of basal area removed) and very heavy thinning (51–57% of basal area removed). Thinning was achieved via a combination of systematic and selective methods by removing every seventh row of trees and then by cutting suppressed and subdominant trees in the remaining rows (i.e., thinning from below). Four years after thinning, mean values and probability density distributions of stand structural indices showed that the heavier the thinning, the stronger the tendency towards random tree spatial positions. Height and diameter differentiation were initially low for these plantations and decreased after the 4-year period in both control and thinned plots. Mark variograms indicated low spatial autocorrelation in tree diameters at short distances. Diameter increment was significantly correlated with the inter-tree competition indices, and also with the mean directional stand structural index. Two mixed models were proposed for estimating diameter increment using a spatial index based on basal area of larger trees (BALMOD) in one model versus spatial competition index by Bella in the other model. As well, a model to estimate canopy bulk density (CBD) was developed, as this variable is important for fire risk assessment. Both heavy and very heavy thinning resulted in a decrease of crown fire risk over no thinning, because of the reduction in CBD. However, thinning had no effect on the height to crown base and thus on the flame length for torching. Overall, although thinning did not increase size differentiation between trees in the short term, the increase in diameter increment following thinning and the reduction of crown fire risks support the use of thinning. Also, thinning is a necessary first step towards converting Scots pine plantations to more natural mixed broadleaved woodlands. In particular, the very heavy thinning treatment could be considered a first step towards conversion of overstocked stands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号