首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yun Y  Yu F  Wang N  Chen H  Yin Y  Ma Z 《Pest management science》2012,68(8):1156-1163
BACKGROUND: Wheat take‐all caused by Gaeumannomyces graminis var. tritici (Ggt) has become an emerging threat to wheat production in the last few years. Silthiofam is very effective against Ggt, and recently it has been widely used for the control of take‐all in China. However, farmers have noted a decline in control efficacy with this compound in some wheat fields, suggesting that the pathogen may have developed resistance to silthiofam. RESULTS: Of the 66 Ggt isolates collected from different locations in China, 27 were resistant to silthiofam. There was no cross‐resistance between silthiofam and tecuconazole or difenoconazole. The effectiveness of silthiofam in controlling take‐all was compromised on wheat inoculated with silthiofam‐resistant isolates. Based on the DNA fingerprinting generated by microsatellite PCR, two predominant genetic clusters were found among these isolates and were clearly associated with the sensitivity to silthiofam. CONCLUSION: Silthiofam has a high risk in the development of resistance in Ggt. Tebuconazole and difenoconazole show great potential for control of take‐all on wheat. Results from this study provide useful information for take‐all control and the management of fungicide resistance. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
Crop rotation is the oldest, and perhaps the best cultural practice for reducing the risk of take-all. The effects of crops sown before wheat in a rotation are known in detail, but we know little about the opportunities for reducing take-all risk by planting certain crops in the summer period between wheat harvest and the planting of a subsequent winter wheat crop. We investigated the effects on take-all of five summer fallow crops, two soil tillage treatments and a fungicide seed treatment, in a five site-year experiment. We tested the effects of oats, oilseed rape, mustard, ryegrass and volunteer wheat crops. Bare-soil plots were also included. Take-all epidemics varied with year and site. Summer fallow crops had a greater effect on tilled plots. The incidence and severity of take-all were significantly higher in the wheat volunteer plots, whereas maintaining bare soil provided the lowest level of disease. Oilseed rape had no significant effect on take-all incidence in our experiment. The best candidates for reducing take-all risk appeared to be oats, mustard and ryegrass. These summer fallow crops decreased disease levels only when associated with conventional tillage. Summer fallow crops did not alter take-all decline in the same way as a break crop after a wheat monoculture.  相似文献   

3.
4.
Two isolates of Pseudomonas fluorescens (2–79 and 13–79) from the USA were evaluated in the UK as biological control agents against Gaeumannomyces graminis var. tritici , the cause of take-all in wheat. Biological control agents were applied as seed coatings in carboxymethyl cellulose (CMC) to seven wheat trials sown in 1987 and 1988 on fen peat and clay soils, and as peat-based and microgranule formulations in one of these trials. In a trial of spring wheat on fen peat, all treatments with biological control agents reduced the percentage take-all infection of crown roots and seminal roots, but the effects of only one isolate were statistically significant ( P <0·05). Effects of biological control agents on infection rates in five other trials were not significant. In the trial in which application methods were compared, peat-based inoculum initially appeared most effective but none of the treatments reduced take-all significantly throughout the season. Application of biological control agents was associated with yield increases in several trials; these were not consistently associated with effects on take-all. These results suggest that the isolates of P. fluorescens have potential to reduce take-all and increase yields of wheat in the UK, but the beneficial effects are inconsistent. There is a need to develop isolates which reliably control severe take-all in a variety of soil types.  相似文献   

5.
Two field experiments, in 1999 and 2000, were used to test whether reductions in root growth and function explained the effects of take-all on crop water and nitrogen uptake. The fungicide silthiofam was used to manipulate take-all independently of other factors. Soil water content was manipulated from heading to determine effects on disease progress and resource capture. Epidemic progress was significantly delayed in the presence of silthiofam, leading to reductions in disease in both experiments. Effects of silthiofam were reduced by increasing soil water late in the season, although only in 2000 did increased soil water content have a direct effect, leading to a higher rate of disease increase. Higher levels of disease in the absence of silthiofam did not affect root growth as measured by total root length density (TRLD), but did lead to significantly reduced healthy root length density (HRLD, a measure of functional roots) in both experiments. Only in 2000 were there any significant effects of increased take-all on water and nitrogen uptake. This was attributed to the higher TRLD in the (1999) crop, which allowed HRLDs to be maintained above a critical threshold (where water and nitrogen uptake start to be severely affected) despite loss of functional root to disease. The effects of take-all on nitrogen uptake were more likely to affect crop canopy size and duration than the relatively small effects observed on water uptake. Increasing soil water content allowed the crop to take up more water in absolute terms despite, in 2000, increasing levels of disease and reducing HRLD.  相似文献   

6.
The incidence and severity of take-all, caused by Gaeumannomyces graminis var. tritici (Ggt), in susceptible crops depend on climate, soil characteristics and cropping practices. Take-all can be controlled by modifying crop rotation, crop management and fungicide treatment. When available, fungicides are used as a seed treatment and are partially effective. There is currently no reliable method for helping farmers to optimise their choice of cropping system to improve take-all control. In this study, we defined 16 models, based on various mathematical functions and input variables, for predicting disease incidence in a wheat crop as a function of soil characteristics, climate, crop rotation and crop management. The parameters of these models were estimated from field experiments carried out at six sites in the north of France over a ten-year period. The root mean squared error of prediction (RMSEP) values of the models were estimated by cross validation and compared. RMSEP was in the range 16.34–65.93% and was higher for the models based on multiplicative functions. The lowest RMSEP value was obtained for a dynamic model simulating disease incidence during the crop cycle and which included among input variables the percentage of diseased plants determined at GS30.  相似文献   

7.
Grass species were grown in plots, as pure stands or mixed with wheat, after a sequence of wheat crops in which take-all ( Gaeumannomyces graminis var. tritici ) had developed. Annual brome grasses maintained take-all inoculum in the soil as well as wheat (grown as a continuous sequence), and much better than cultivated species with a perennial habit. Take-all developed more in wheat grown after Anisantha sterilis (barren brome) or Bromus secalinus (rye brome), with or without wheat, than in continuous grass-free wheat in the same year, where take-all decline was apparently occurring. It was equally or more severe, however, in wheat grown after Lolium perenne (rye-grass) or Festuca arundinacea (tall fescue), despite these species having left the least inoculum in the soil. It was most severe in plots where these two grasses had been grown as mixtures with wheat. It is postulated that the presence of these grasses inhibited the development of take-all-suppressive microbiota that had developed in the grass-free wheat crops. The effects of the grasses appeared to be temporary, as amounts of take-all in a second subsequent winter wheat test crop were similar after all treatments. These results have important implications for take-all risk in wheat and, perhaps, other cereal crops grown after grass weed-infested cereals or after set-aside or similar 1-year covers containing weeds or sown grasses, especially in combination with cereal volunteers. They also indicate that grasses might be used experimentally in wheat crop sequences for investigating the mechanisms of suppression of, and conduciveness to, take-all.  相似文献   

8.
Journal of Plant Diseases and Protection - The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causing take-all in wheat, barley and rye is regarded as the most important disease on...  相似文献   

9.
Schoeny A  Lucas P 《Phytopathology》1999,89(10):954-961
ABSTRACT Take-all, caused by Gaeumannomyces graminis var. tritici, is a damaging disease of wheat that remains difficult to control. The efficacy of an experimental fungicide, applied as a seed treatment, was evaluated in five naturally infested field experiments conducted during three cropping seasons. Plants were sampled and assessed for take-all incidence and severity at different growth stages. Nonlinear models expressing disease variables as a function of degree-days were fitted to the observed data. The incidence equation involved two parameters reflecting the importance of primary and secondary infection cycles. The earliness of infection was identified as an important variable to interpret the effects of the fungicide. In an early epidemic, the fungicide significantly reduced take-all incidence during all or most of the cropping season, whereas in late epidemics, it provided only moderate reductions of incidence. The seed treatment reduced incidence by delaying the primary infection cycle. The fungicide significantly reduced severity during the whole epidemic. It appeared more efficient in limiting root-to-root spread than in slowing down the extension of necrosis on diseased roots.  相似文献   

10.
Cold tolerant isolates of Gaeumannomyces graminis var. graminis ( Ggg ) and Phialophora sp. (lobed hyphopodia), which produced at least comparable growth rates at 5°C to those of pathogenic G. graminis var. tritici ( Ggt ), were shown to control take-all disease in wheat effectively in 2 years of field experiments in New South Wales, Australia. The addition of oat inoculum of these fungi at the rate of 60 kg/ha to the seeding furrow significantly ( P  ≤ 0.05) reduced disease and increased grain yields by 33–45% compared to the Ggt alone treatment. The use of 30 kg/ha of oat inoculum also significantly ( P  ≤ 0.05) reduced disease and increased grain yields by 21–44%. These high levels of take-all control were obtained consistently from four field experiments on three different soil types with different pHs. A treatment inoculated with Ggg alone showed no disease symptoms and produced grain yields similar to that of untreated wheat. This fungus is, therefore, non-pathogenic to wheat. At high rates of inoculation of Ggg and Phialophora sp. (lobed hyphopodia), 65–80% of tillering wheat plants (GS 32) had root systems colonized by these fungi. In contrast, two Pseudomonas spp. and an isolate each of Ggg and Phialophora sp. (lobed hyphopodia), which did not grow at 5°C, were ineffective in controlling take-all. Take-all assessments during heading (GS 61-83) were highly correlated ( R 2=0.6047, P ≤0.0005) with the relative yield increase or decrease of inoculated treatments compared to the Ggt alone treatment. The use of a Ggg isolate (90/3B) and a Phialophora sp. (lobed hyphopodia) isolate (KY) for take-all control has been patented. These fungi are being developed for commercial use.  相似文献   

11.
Isolates of the take-all fungus, Gaeumannomyces graminis var. avenae , which affects oats, wheat and other grasses, and of G.g. var. tritici , which preferentially affects wheat, rye and barley, contain a high proportion of repeated sequences. Total DNA from 57 fungal isolates collected from many locations and different cereal hosts, and scored for virulence on wheat, rye and oats, revealed many restriction fragment length polymorphisms. These RFLP s were observed either by staining the DNA directly, by hybridization to radioactively labelled total fungal DNA , or by hybridization with labelled wheat ribosomal DNA . With only a few exceptions, the isolates with the same preferred cereal hosts showed more similar patterns of restriction fragments than isolates that had different pathogenicity properties on cereal hosts, irrespective of the geographical origins of the isolates. This was even the case for R isolates of G.g. var. tritici that were virulent on wheat and rye compared with N isolates that were virulent only on wheat. Isolates were identified by hybridizing DNA from infected root samples with 32P-labelled total fungal DNA . The restriction fragment polymorphisms involving families of repeated sequence can therefore be used as a predictive assay for host preference of an isolate, and have probably arisen by host selection of fungal lineages. The variation between isolates in different pathogenicity groups suggests that there is little gene flow between isolates that can infect different hosts, even though they can coexist in the same field.  相似文献   

12.
Increases in populations of fluorescent pseudomonads on wheat roots are usually associated with take-all decline, natural control of take-all, a disease caused by the fungus Gaeumannomyces graminis var. tritici (Ggt). Colonisation by Pseudomonas fluorescens strain Pf29A was assessed on the roots of healthy plants and of plants with take-all, and the effect of this bacterium on indigenous populations of fluorescent pseudomonads was studied. The efficacy of Pf29A as an agent for the biocontrol of take-all on five-week-old wheat seedlings was tested in non-sterile conducive soil in a growth chamber. RAPD (random amplification of polymorphic DNA) fingerprinting with a decamer primer was used to monitor strain Pf29A and culturable indigenous rhizoplane populations of fluorescent pseudomonad. Pf29A decreased disease severity and accounted for 44.6% of the culturable fluorescent pseudomonads on healthy plant rhizoplane and 75.8% on diseased plant rhizoplane. Fewer RAPD patterns were obtained when Pf29A was introduced into the soil with Ggt. In the presence of Ggt and necrotic roots, Pf29A became the dominant root coloniser and dramatically changed the diversity and the structure of indigenous fluorescent pseudomonad populations. The results show that Ggt and reduced lesion size on roots can trigger a specific increase in antagonist populations and that the introduction of a biocontrol agent in soil influences the structure of indigenous bacterial populations.  相似文献   

13.
全蚀病是小麦上一种重要的土传病害。选育和种植抗病品种是防治小麦全蚀病的根本途径,抗病基因研究是抗病育种的基础性工作。根据基因TaWIR1b(Accession no.M94959.1)的全长序列设计引物扩增‘新农19’的cDNA,获得了完整ORF,编码85个氨基酸残基,比对后发现与TaWIR1b序列同源性达100%。根据获得的TaWIR1b基因全长序列设计定量引物,分析TaWIR1b在全蚀菌胁迫条件下不同互作模式的表达特征。结果表明接种全蚀病菌后抗病小麦品种‘新农19’中TaWIR1b基因被诱导表达,接菌后3d达到峰值143.97,感病品种‘新麦19’中峰值出现在接菌后8d,表达量仅为对照的4.22倍,提示该基因可能参与小麦对全蚀病的抗病过程。  相似文献   

14.
Strobilurin-resistant isolates of Blumeria ( Erysiphe ) graminis f.sp. tritici , the cause of wheat powdery mildew, were more than 10-fold less sensitive to azoxystrobin than sensitive isolates. In all resistant isolates, a mutation resulting in the replacement of a glycine by an alanine residue at codon 143 (G143A) in the mitochondrial cytochrome b gene was found. Allele-specific primers were designed to detect this point mutation in infected wheat leaves. Using quantitative fluorescent allele-specific real-time polymerase chain reaction (PCR) measurements, strobilurin-resistant A143 alleles could be detected amongst strobilurin-sensitive G143 alleles at a frequency of at least 1 in 10 000, depending on the amount of target and nontarget DNA. Most isolates tested were dominant homoplasmic for either the A143 or G143 allele, although mixed populations of alleles could be detected in some isolates. In some of these isolates, strobilurin resistance was not always stable when they were maintained for many generations in the absence of selection. The allele-specific real-time PCR assay was also used to follow the dynamics of A143 alleles in field populations of B . graminis f.sp. tritici before and after application of fungicides. As expected, the A143 allele frequency only increased under selection pressure from a strobilurin fungicide. After three sprays of azoxystrobin, a pronounced selection for the strobilurin-resistant allele, with an increase in average frequency from 2·2 to 58%, was measured. The use of quantitative real-time PCR diagnostics for early detection of fungicide resistance genes at low frequency, coupled with risk evaluation, will be invaluable for further resistance risk assessment and validation of antiresistance strategies.  相似文献   

15.
The take-all fungus, Gaeumannomyces graminis var. tritici , was highly sensitive to fluquinconazole ( in-vitro EC50 0·016–0·018 mg L−1), a fungicide developed for use as a seed treatment to control take-all, and to prochloraz (EC50 0·006 mg L−1). Fungi of other genera that were commonly isolated from cereal roots were sensitive in varying degrees to prochloraz but were relatively insensitive (e.g. Fusarium culmorum , EC50 > 20 mg L−1) or slightly sensitive (e.g. Epicoccum purpurascens , EC50 0·514 mg L−1) to fluquinconazole. Gaeumannomyces graminis var. graminis and G. cylindrosporus , weak parasites that can protect roots against take-all, and an unnamed Phialophora sp., all closely related to the take-all fungus, were highly or moderately sensitive to fluquinconazole. Alternaria infectoria and E. purpurascens were most consistently effective in suppressing development of take-all on pot-grown wheat plants dual-inoculated with G. graminis var. tritici and the nonpathogen. Take-all was decreased more on dual-inoculated wheat plants grown from seed treated with fluquinconazole or fluquinconazole plus prochloraz than when only an antagonistic fungus ( A. infectoria , E. purpurascens , Fusarium culmorum or Idriella bolleyi ) or a seed treatment was applied. These fungi were less effective in combination with seed treatments on barley. Gaeumannomyces graminis var. graminis and G. cylindrosporus , tested on wheat, suppressed take-all only in the absence of fungicides. It is suggested that the performance of seed treatment containing fluquinconazole against take-all may in some circumstances be enhanced by its partial specificity for the take-all fungus.  相似文献   

16.
Eyespot pathogens, Tapesia yallundae and Tapesia acuformis, were isolated from two trial sites in the UK over several years. Both sites were treated with 2 applications per year of cyprodinil (a new anilinopyrimidine fungicide), prochloraz and a mixture of cyprodinil with prochloraz. One trial site was exposed to cyprodinil for 3 years, and the second for a total of 11 years, including 5 years before the trial was initiated. Control of eyespot and sensitivity to cyprodinil were monitored. During the first 3 years of the trial, disease control with all fungicide treatments ranged from 43% to 82%. At the site, where the trial was extended for a further 3 years, control then began to decline but no practical resistance was detected. The decline in control by both fungicides suggests that factors other than reduced sensitivity might be involved. Field isolates of both T. yallundae and T. acuformis with reduced sensitivity to cyprodinil were found predominantly in plots treated with cyprodinil. A reduction in sensitivity to cyprodinil was identified in the population from cyprodinil-treated plots in two years out of six, and in the population from mixture plots in the final year. No obvious trends could be identified and in-vivo studies showed control of most isolates with reduced sensitivity could be regained by increasing the dose to one tenth of the recommended field rate. Analysis of progeny from sexual crosses involving a sensitive isolate and a field isolate with an ED50 value higher than the baseline sensitivity range indicated that a single gene controlled the reduction in sensitivity to cyprodinil in one T. yallundae isolate. There is clearly a resistance risk in eyespot to cyprodinil. The reduction in sensitivity is monogenic in inheritance and at a significant level in some isolates, but any shift in sensitivity in field populations has so far been gradual.  相似文献   

17.
为获得对小麦全蚀病菌有良好拮抗效果的生防菌株,分别从河南省商丘市及驻马店市小麦全蚀病发生田块中采集小麦根际土样,采用稀释平板涂布法共分离到1051株细菌,通过与全蚀病菌G1037菌株进行平板对峙筛选,最终获得9株具有明显拮抗效果且生长状况良好的菌株。16S rDNA序列比对及生理生化性状分析结果表明:菌株P155、P154、P16及P147为荧光假单胞菌Pseudomonas fluorescens,菌株P188和P97为恶臭假单胞菌Pseudomonas putida,菌株LY3为产酶溶杆菌Lysobacter enzymogenes,菌株S38为嗜根寡养单胞菌Stenotrophomonas rhizophila,菌株B20为洋葱伯克霍尔德Burkholderia cepacia。产抗生素相关基因的检测结果发现,菌株P147含吩嗪和硝吡咯菌素合成基因,菌株B20含硝吡咯菌素合成基因。除B20、LY3、S38和P147外,其余菌株均可产生嗜铁素。9株细菌都产蛋白酶。除P97、B20和S38外,其余菌株均可产脂肽类物质。盆栽试验结果表明,9株生防菌对小麦全蚀病都具有较好的防治效果,菌株P155和P154的防治效果最好,相对防效分别为67.11%和63.82%,略高于3%的苯醚甲环唑种衣剂的防治效果。研究结果表明这些细菌具有作为小麦全蚀病生防菌的潜力。  相似文献   

18.
Gaeumannomyces graminis var. tritici was recovered from 63% of 731 winter wheat plants collected randomly from six sites where wheat had been grown in monoculture for the previous 7–22 years. Typical take-all was not evident at the time the plants were collected. The fungus was isolated by a baiting method without regard to the presence of take-all on the plants. Isolates from fields under short-term wheat cultivation (3 years or less after a break crop) were obtained by plating directly from infected roots of plants with typical take-all. Virulent isolates comprised 89 and 99% of those collected from long- and short-term wheat cultivation respectively. There was also only a slight difference in the proportions of virulent isolates among monoascosporic subcultures from the two groups of isolates. There was thus little evidence that, during prolonged wheat cultivation, declining virulence in the population of G. graminis var. tritici could account for the absence of take-all.  相似文献   

19.
ABSTRACT A marked-isolate, release-recapture experiment was conducted to assess the relative contributions of seed-transmitted (released isolates) versus all other inocula to foliar and grain populations of Phaeosphaeria nodorum in winter wheat rotated with nonsusceptible crops in New York and Georgia, United States. Seed infected with two distinct groups of marked isolates of P. nodorum containing rare alleles (identified by amplified fragment length polymorphisms [AFLPs]) and balanced for mating type were planted in experimental field plots in two locations in each state. Recapture was done by isolating P. nodorum from leaves showing necrotic lesions at spring tillering and flowering stages, and mature grains from spikes showing glume blotch. Isolates from these samples were genotyped by AFLPs and categorized as released or nonreleased to infer sources of inoculum. Both infected seed and other sources of the pathogen contributed significant primary inocula to populations recovered from leaves and harvested grain. Seed-transmitted genotypes accounted for a total of 57% of all isolates recovered from inoculated plots, with a range of 15 to 90% of the populations of P. nodorum collected over the season in individual, inoculated plots at the four locations. Plants in the noninoculated control plots also became diseased and 95% or more of the isolates recovered from these plots were nonreleased genotypes. Although other potential sources of P. nodorum within and adjacent to experimental plots were not ruled out, nonreleased genotypes likely were derived from immigrant ascospores potentially from sources at a considerable distance from the plots. Our results suggest that, although reduction of seedborne inoculum of P. nodorum may delay foliar epidemics, this strategy by itself is unlikely to result in high levels of control in eastern North America because of the additional contribution from alternative sources of inoculum.  相似文献   

20.
ABSTRACT The effects of take-all epidemics on winter wheat yield formation were determined, and disease-yield relationships were established to assess the agronomic efficacy and economic benefits of control methods. Epidemics were generated in naturally infested fields by varying cropping season, crop order in the rotation, and experimental fungicide seed treatment. Disease incidence and severity were assessed from tillering to flowering. Yield components were measured at harvest. Models simulating the formation of the yield components in the absence of limiting factors were used to estimate the losses caused by take-all. Losses were predicted by the disease level at a specific time or the area under the disease progress curve, reflecting accumulation during a specific period. Losses of grain number per square meter and 1,000-grain weight were linked to cumulative disease incidence between the beginning of stem elongation and flowering, and disease incidence at midstem elongation, respectively. Yield losses were accounted for by both cumulative disease incidence between sowing and flowering, and disease incidence at midstem elongation. Results confirm the importance of nitrogen fertilization in reducing the impact of take-all on wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号