首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This study examined the thermal and mechanical properties of polypropylene filaments reinforced with multi-walled carbon nanotubes (MWNTs). The MWNTs were functionalized with maleic anhydride polypropylene to increase the interfacial interactions between the CNTs and polypropylene. PP/MWNT composites with different concentrations of MWNTs were prepared by melt compounding using a twin screw extruder. The composites of the filament were then post drawn and heat treated. Tensile tests showed increased strength with the addition of only 0.1 wt% while there were only slight changes in elongation. The thermal properties were also slightly enhanced by the MWNTs.  相似文献   

2.
The Preparation of conductive biocomposite fiber through Carbon nanotubes (CNTs) incorporation into biopolymer matrixes has stimulated much interest for bio-implant applications. The present study focuses on development and characterization of biocomposite fiber composed of chitosan (CHT) as a biopolymer and multiwall carbon nanotubes (MWNTs) as a conductive filler. In term of processing, the most important challenge is to prepare a highly stable dispersion of MWNTs in biopolymer matrix. The hydrodynamic diameter distribution of CNTs in acetic acid solution acquired by dynamic light scattering (DLS).Results demonstrate the supreme stability of CNTs dispersion which is extremely essential for homogenous distribution of CNT in polymeric matrix. Rheological properties of the spinning solution have also been investigated to adjust the viscosity for fiber processing step. A range of viscosity between 2000–8000 cP, has been recorded in different CNT loading. The scanning electron microscopy (SEM) images of the surface and cross sectional area of the fibers reveal the formation of nano-pores after MWNT addition. The tensile strength show a maximum increase of about 33.65 % compared to bare CHT. Also, the measurement of four probe electrical conductivity for different MWNTs loading shows a maximum conductivity of 0.107 S/cm at percolation threshold of 2.89 wt%.  相似文献   

3.
Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20–30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 cm−1 shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.  相似文献   

4.
Poly(vinyl alcohol) (PVA)/multi-walled carbon nanotube (MWNT) composite films were prepared by casting a DMSO solution of PVA and MWNTs, whereby the MWNTs were dispersed by sonication. A significant improvement in the mechanical properties of the PVA drawn films was achieved by the addition of a small amount of MWNTs. The initial modulus and the tensile strength of the PVA drawn film increased by 30% and 45% respectively, with the addition of 1 wt% MWNTs, which are close to those calculated from the rule of mixtures, and were strongly dependent upon the orientation of the PVA matrix. The mechanical properties, however, were not improved with a further increase in the MWNT content. The orientation of MWNTs in the composite was not well developed compared to that of the PVA matrix. This result suggests that the improvement of the molecular orientation of the PVA matrix plays a major role in the increase of the mechanical properties of the drawn PVA/MWNT composite films.  相似文献   

5.
Nanocomposites of polyurethane (PU) and multi-walled carbon nanotubes (MWNTs) were prepared via in-situ polymerization of poly(ɛ-caprolactone)diol (PCL)-grafted-MWNTs, 4,4′-methylene bis(phenyl isocyanate), and 1,4-butanediol. The grafting of PCL onto MWNTs was confirmed by Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The nanocomposites showed more improved mechanical properties compared to conventional nanocomposites with the same MWNT loading. The thermo-responsive shape recovery as measured in a cyclic tensile test was observed to be approximately 80 % for in-situ nanocomposites, though it showed a reduced trend as the wt% of MWNTs increased. X-ray diffraction investigation also showed that the addition of MWNTs into the polyurethane increased the crystallinity. Scanning electron microscopy and TEM measurements showed better dispersion of MWNTs in the nanocomposites synthesized using in-situ method. Consequently, the presence of PCL-g-MWNTs made an important contribution to the enhancement of the mechanical and shape memory properties of polyurethane.  相似文献   

6.
This paper reports the fabrication of electrical heating elements based on the graphene/waterborne polyurethane (WPU) composite coated on polyester fabric with toughness like that of artificial leather. Samples were prepared with 0, 4, 8, and 16 wt% of graphene by using the knife edge method, and then, the samples were annealed from 100 oC to 160 °C. The graphene content had a large effect on the electrical and electrical heating properties. The surface resistivity was decreased by approximately 6 orders of magnitude with an increase from 0 wt% to 16 wt% graphene/WPU composite fabric. The electric heating properties were also improved, as indicated by the percolation threshold. Samples with various graphene contents were annealed, and it was found that the electrical and electrical heating properties were improved, and the most enhanced properties were obtained when the samples were annealed at 120 °C. The initial modulus and tensile strength were increased in comparison with those of 0 wt% and 16 wt% graphene/WPU composite coated on fabrics, but the elongation at break value was slightly decreased with an increasing graphene content. When the samples were annealed, initial modulus and tensile strength of samples were improved at 120 °C and 140 °C, and they were slightly decreased at 160 °C. However, the elongation at break showed an opposite tendency to the tensile strength. With the increase in content of graphene and annealing at 120 °C and 140 °C, the samples were more stiff and tough, and at 160 °C, the samples were softer. Therefore, graphene/WPU composite coated on polyester fabric by use of the annealing process may have applications in electrical heating elements due to its excellent heating performance and toughness like that of artificial leather.  相似文献   

7.
A new type of hydrophobic polyacrylonitrile (PAN) nanofiber is fabricated by solution blowing of a blend solution of fluorine-containing polyacrylate (FPA) and PAN. The nanofibers’ surface composition, hydrophobicity, and protection ability were evaluated to clarify the effects of FPA addition. Results revealed that FPA addition increased the nanofiber diameter, as well as enhanced the hydrophobicity and transport properties of the nanofiber mats. The mats had average water contact angles of 123.44°, 132.11°, and 137.11° for FPA contents of 0.66 wt%, 1.98 wt%, and 3.30 wt%, respectively. All these results suggested the potential of the solution blowing nanofiber mats as protection materials.  相似文献   

8.
We report the microstructures and electrical properties of poly(2-cyano-1,4-phenylene terephthalamide) (cyPPTA)-based composite films including pristine multi-walled carbon nanotube (MWCNT) of 0.3-10.0 wt%, which were manufactured by ultrasonication-based solution mixing and casting techniques. FT-IR spectra of the composite films revealed the existence of specific interaction between cyPPTA and MWCNT. Accordingly, the pristine MWCNTs were found to be dispersed uniformly in the cyPPTA matrix, as confirmed by TEM images. The electrical resistivity of the composite films decreased considerably from ~1010 Ω cm to ~100 Ω cm with the increase of the MWCNT content by forming a conductive percolation threshold at ~0.525 wt%. The composite films with 3.0-10.0 wt% MWCNT contents, which have sufficiently low electrical resistivity of ~102-100 Ω cm, exhibited excellent electric heating performance by attaining high maximum temperatures and electric power efficiency under given applied voltages of 10-100 V. Since the thermal decomposition of the composite films took place at 520-600 °C under air atmosphere, cyPPTA/MWCNT composite films could be used for high performance electric heating, antistatic, and EMI shielding materials.  相似文献   

9.
Electrical conductive nanocomposite fibers were prepared with polyaniline (PANI), polyacrylonitrile (PAN) and multi-walled carbon nanotubes (MWCNTs) via electrospinning. The morphology and electrical conductivity of the PANI/PAN/MWCNTs nanocomposite fibers were characterized by scanning electron microscope (SEM) and Van De Pauw method. Electrical conductivity of nanocomposite fibers increased from 1.79 S·m?1 to 7.97 S·m?1 with increasing the MWCNTs content from 3.0 wt% to 7.0 wt%. Compared with PANI/PAN membranes, the mechanical property of PANI/PAN/MWCNTs nanocomposites fiber membranes decreased. The microwave absorption performance of composite films was analyzed using waveguide tube, which indicated that with the thickness increasing the value of RL reduced from ?4.6 to ?5.9 dB.  相似文献   

10.
Electrically conducting textile fibers were produced by wet-spinning under various volume fractions using thermoplastic polyurethane (TPU) as a polymer and carbon black (CB), Ag-powder, multi-walled carbon nanotubes (MWCNTs), which are widely used as electrically conducting nanofillers. After applying the fiber to the heat drawing process at different draw ratios, the filler volume fraction, linear density, breaking to strength, and electrical conductivity according to each draw ratio and volume fraction. In addition, scanning electron microscopy (SEM) images were taken. The breaking to strength of the TPU fiber containing the nanofillers increased with increasing draw ratio. At a draw ratio of 2.5, the breaking to strength of the TPU fiber increased by 105 % for neat-TPU, 88 % for CB, 86 % for Ag-powder, and 127 % for MWCNT compared to the undrawn fiber. The breaking to strength of the TPU fiber containing CB decreased gradually with increasing volume fraction, and in case of Ag-powder, it decreased sharply owing to its specific gravity. The electrical conductivity of the TPU fiber containing CB and Ag-powder decreased with increasing draw ratio, but the electrical conductivity of the TPU fiber containing MWCNT increased rapidly after the addition of 1.34 vol. % or over. The moment when the aggregation of MWCNT occurred and its breaking to strength started to decrease was determined to be the percolation threshold of the electrical conductivity. The heat drawing process of the fiber-form material containing the anisotropic electrical conductivity nanofillers make the percolation threshold of the electrical conductivity and the maximum breaking to strength appear at a lower volume fraction. This is effective in the development of a breaking to strength and electrical conductivity.  相似文献   

11.
Multi-walled carbon nanotubes (MWNTs) nanocomposites with the polymer matrix composed of blends of poly(vinylidene fluoride) (PVDF) and polyurethane (PU) were prepared via functionalization of 3,4,5-triflouroaniline (TFA) on MWNTs. The MWNTs/polymer nanocomposites showed a dominantly enhanced elongation due to incorporation of PU molecules in PVDF matrix and the improved MWNTs dispersion in the polymer matrix resulting from functionalization of MWNTs with TFA. The functionalization of TFA on MWNTs was confirmed by the measurements of Raman, FT-IR spectra, SEM, and TEM images. In addition, the dielectric constant of nanocomposites increased with an increase of TFA-functionalized MWNTs in PVDF/PU/MWNTs nanocomposites. The polymer blend nanocomposites incorporating MWNTs may be available as an alternative potential route for the actuator materials.  相似文献   

12.
Ni-coated short carbon fibers (Ni-SCFs) were prepared using an electrodeposition method. Short carbon fiber (SCF) reinforced epoxy composites were prepared by changing the fiber content (0.1–0.7 wt%). To investigate the effect of Ni-coated short carbon fibers on the mechanical and electrical properties of the composites, we prepared two kinds of reinforcements: the short carbon fibers treated by 400 °C (400 °C treated SCFs) and Ni-SCFs. Fracture characteristics of the composites revealed the Ni coatings and the epoxy matrix had a better interface, so that the results of tensile and bending strength were better in epoxy/Ni-SCFs composites than those in epoxy/400 °C treated SCFs composites. The 400 °C treated SCFs decreased the electrical resistivity of the epoxy composites, compared to the pure epoxy. However the epoxy/Ni-SCFs composites had lower electrical resistivity than epoxy/400 °C treated SCFs with the same fiber content.  相似文献   

13.
For thermal adaptable fabrics, the polyurethane-urea microcapsules containing phase-change materials (PCMs: hexadecane, octadecane and eicosane) were successfully synthesized by interfacial polycondensation using 2,4-toluene diisocyanate (TDI)/poly(ethylene glycol) (PEG400)/ethylene diamine (EDA) as shell monomers and nonionic surfactant NP-12 in an emulsion system under stirring rates of 3,000~13,000 rpm. The mean particle size of microcapsule decreased significantly with increasing the stirring rate up to 11,000 rpm, and then leveled off. The mean particle size increased with increasing the content and molecular weight (eicosane > octadecane > hexadecane) of PCMs at the same stirring rate. The mean particle sizes of microcapsules were found to decrease with increasing the NP-12 content up to 1.5 wt%, and thereafter increased a little. It was found that the melting temperature (Tm) and crystallization temperature (Tc) of three kinds of encapsulated PCMs and their enthalpy changes (ΔHm, ΔHc) increased with increasing PCM contents. The encapsulation efficiencies (Ee) of hexadecane microcapsule linearly increased with increasing the content of hexadecane. It was found that the stable microcapsule containing 50 wt% of hexadecane could be obtained in this study. However, Ee of octadecane and eicosane microcapsules increased with increasing PCM’s contents up to 40 wt%, and then decreased a little. By considering the encapsulation efficiency, it was found that the maximum/optimum contents of octadecane and eicosane microcapsules were about 40 wt%. By the dynamic thermal performance test, it was found that the maximum buffering levels of Nylon fabrics coated with hexadecane, octadecane, and eicosane microcapsules were about ?2.4/+2.9°C, ?3.6/+3.6°C and ?4.0/+4.7°C, respectively.  相似文献   

14.
The multi-walled carbon nanotube (MWNT)/cellulose nanocomposites were prepared by using monohydrated Nmethylmorpholine-N-oxide (NMMO) as a solvent for dispersing the acid-treated MWNTs (A-MWNTs) as well as for dissolving the cellulose. The A-MWNTs were well dispersed in both monohydrated NMMO and the nanocomposite films. The nanocomposite films were prepared by a film-casting method onto a glass plate. The tensile strain at break, Young’s modulus, and toughness of nanocomposite films increased by ~5, ~2 and ~12 times, respectively at ? (A-MWNT content in the nanocomposite)=0.8 wt%, as compared to those of the pure cellulose film. The thermal degradation temperature of the nanocomposite films also increased from 329 to 339 oC by incorporation of 1 wt% A-MENTs. The electric conductivities of the A-MWNT/cellulose nanocomposites at ? =1 and 10 wt% were 2.09×10?5 and 3.68×10?3 S/cm, respectively. The transmittances were 86, 69 and 55 % at 550 nm for 0.4, 0.8 and 1 wt% nanocomposite films, respectively. Thus, these nanocomposites are promising materials in terms of all the properties studied in this paper and can be used for many applications, such as toughened cellulose fibers, transparent electrodes, etc.  相似文献   

15.
The core-sheath nanofibers consisting of polyurethane (PU) core and PU composites sheath with multi-walled carbon nanotubes (MWNTs) were prepared by electrospinning. At low MWNT concentration, MWNTs appeared highly aligned along the fiber axis with some curving in nanotubes, whereas in case of high concentration, some aggregation of MWNTs appeared due to difficulty in full dispersion of nanotubes. In comparison of the single component nanofiber webs, the core-sheath nanofiber webs showed much better mechanical properties of modulus and breaking stress, including an exceptional elongation-at-break. It indicates that the CNT-incorporated core-sheath structure is very effective for enhancing the mechanical properties of nanofiber webs. In addition, the core-sheath nanofibers demonstrated the fast shape recovery, compared with one component fibers of pure shape memory PU and PU/MWNTs, which provides the possibility of fabricating more sensitive intelligent materials.  相似文献   

16.
Composites consisting of polyurethane (PU)/carbon nanotubes (CNTs) have been successfully prepared by solution mixing method. CNTs were modified through mechano-chemical reaction to increase the compatibility with PU via hydrogen bondings. SEM microphotographs proved that modified CNTs (M-CNTs) became shorter and FTIR spectra showed that hydroxyl groups had been introduced to the surface of M-CNTs. SEM images of PU/M-CNTs composites also proved that M-CNTs were effectively dispersed in PU matrix. Mechanical property tests showed that addition of M-CNTs could significantly improve the tensile properties of PU/M-CNTs composite (breaking strength enhancement ratio for composite with 5.0 wt% M-CNTs was 103.81 %). The thermal stability of composites with M-CNTs was also improved. The initial degradation temperature enhancement was 19.9 oC for the composite with 0.5 wt% M-CNTs. Electrical property tests showed that the electrical properties were improved by adding M-CNTs. The volume conductivities increased 3 and 5 orders of magnitude for the composites with 5.0 wt% and 10 wt% M-CNTs, respectively. The addition of M-CNTs had little effect on the elastic properties of the composites.  相似文献   

17.
Molecular dynamics simulations are used here to study the adsorption of polymer chains on the nanotube surface. Considering three nanotubes, including carbon, boron nitride and gallium nitride nanotubes, the effect of nanotube types on the polymer/nanotube interactions are investigated. Aramid, poly(phenylene sulfide), poly(phenylene oxide) and polycarbonate are selected as the polymer chains. It is seen that the π-stacking of these polymer chains results in large interaction energy between the nanotubes and polymer chains. Comparing the interaction energies between different polymer chains and nanotubes, it is shown that boron nitride nanotubes can reinforce polymer matrices more effectively than carbon and gallium nitride nanotubes. Besides, the effect of temperature on the polymer/nanotube interaction is studied. It is shown that the polymer chains have more expanded shapes at larger temperature which leads to more π-π interactions and larger interaction energies.  相似文献   

18.
A new thermal conductive poly(vinylidene fluoride) (PVDF) composite has been developed via a hybrid functionalized graphene sheets (FGS)-nanodiamonds (NDs) filler by a simple solution method. The PVDF composite showed different thermal conductivities at different proportion of hybrid filler. The thermal conductivity of the composite was up to 0.66 W/m·K for a mixture containing 45 wt% hybrid filler, which is about 2-fold increment in comparison to the PVDF martrix. The PVDF composites consisting of 20 wt% hybrid FGS/ND filler at the weight ratio of 1:3 shows the best thermal stability. The electrical conductivity of composites was increased from 5.1×10?15 S cm?1 (neat PVDF) to 7.1×10?7 S cm?1 of the PVDF composite with 10 wt% hybrid filler.  相似文献   

19.
Hydrophobic polypyrrole-coated fabrics with improved electrical conductivity were produced embedding oleic acid as counter-ion. Hydrophobisation of polypyrrole was carried out by means of an ion exchange process after deposition of polypyrrole on cotton fabrics. The fabrics coated with oleic acid-doped polypyrrole showed contact angle of 111°, drop absorption time of 7 minutes and high water repellence, while electrical conductivity increased of ~2 times and heat generation improved, too. Moreover, oleic acid demonstrated a great stability as counter-ion in polypyrrole matrix being present also after washing.  相似文献   

20.
Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号