首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The silane coupling agent of γ-aminopropyl triethoxy silane combined with ultrasonic vibration was employed to modify the surface of high modulus poly (p-phenylene-2, 6-benzobisoxazole) (HMPBO) fibers. The results showed that polar hydroxyl groups were successfully introduced on the HMPBO surface. The contact angles on HMPBO fibers both for water (θ water ) and for glycol (θ glycol ) gradually were decreased, and the surface roughness of HMPBO fibers was also increased. Meanwhile, the single fiber pull-out strength of HMPBO was increased accordingly.  相似文献   

2.
The surface modification of poly (p-phenylene-2,6-benzobisoxazole) (HMPBO) fibers by silane coupling agent of ??-aminopropyl triethoxy silane (KH-560) treatment assisted by ultrasonic vibration was investigated. The chemical composition and surface morphologies of the HMPBO fibers were analyzed and characterized by XPS, FTIR, TGA and SEM. The tensile properties of the HMPBO fibers were also studied. The results indicated that polar hydroxyl groups were successfully introduced on the HMPBO surface after the proposed treatment processes, and the surface roughness of HMPBO fibers was increased. Moreover, the treated HMPBO maintained relatively excellent tensile strength, and the single fiber pull-out strength of HMPBO was improved from 0.94 MPa to 1.07 MPa.  相似文献   

3.
Sansevieria (genus) cylindrica (species) belongs to Agavaceae family plant fiber first time used as a reinforcing agent in the epoxy system. Fibre extracted from leaves, fairly lesser density, porosity, higher strength to weight ratio (hereafter called SCF) and these fibers were alkali-treated and yet impregnated on the epoxy system using wet hand lay up technique in order to compare with untreated fiber on performance. DMA, TGA, DSC, FTIR, SEM, degradation temperature, flexural and tensile tests were performed for untreated and alkali-treated epoxy composites using different SCF volumes viz. 1 vol.%, 5 vol.%, 7 vol.% and 9 vol.%. Alkali treated fibre were found to have higher initial and final degradation temperatures and flexural and tensile strength. The removal of the amorphous hemi-cellulose on alkali treatment was played an instrumental in improving properties. A 3 °C increase in glass transition temperature and decomposition temperature were recorded respectively and over all treated SCF composites reinforced on the epoxy were shown significant results than untreated. Storage modulus and tan ?? were observed well at 9 vol.% treated SCF while flexural and tensile were increased by 35 and 13 % for SCF treated composites respectively.  相似文献   

4.
The vegetable fibers used as reinforcement for polymer matrix composites are usually treated to improve their adhesion with the matrix. The chemical treatment with sodium hydroxide (NaOH) is widely employed, but it may damage the fiber surface structure, reducing its strength. This novel study is related to the use of hydride ions (H?) as protective agent for vegetable fibers, under alkaline treatment, as a way to promote their use in polymeric composites. Sisal fibers were modified by immersion in a NaOH aqueous solution (2, 5, and 10 % wt/vol) with or without the addition of sodium borohydride (NaBH4) (1 % wt/vol) under different treatment conditions. The treated fibers were characterized via density and moisture content analyses and also using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effectiveness of NaBH4 to protect the sisal fiber was more pronounced in moderate NaOH concentrations (5 %) at room temperature or higher for shorter alkaline treatment times.  相似文献   

5.
Jute fibers have immense potential to be used as natural fillers in polymeric matrices to prepare biocomposites. In the present study jute fibers were surface treated using two methods: i) alkali (NaOH) and ii) alkali followed by silane (NaOH+Silane) separately. Effects of surface treatments on jute fibers surface were characterized using fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analyses. Further, the effects of surface treatments on jute fibers properties such as crystallinity index, thermal stability, and tensile properties were analyzed by X-ray diffraction method (XRD), thermo gravimetric analysis (TGA), and single fiber tensile test respectively. The effects of surface treatment of jute fibers on interphase adhesion between of poly(lactic acid) (PLA) and jute fibers were analyzed by performing single fiber pull-out test and was examined in terms of interfacial shear strength (IFSS) and critical fiber length.  相似文献   

6.
In the work, N-methylmorpholine-N-oxide monohydrate (NMMO·H2O) was used as a solvent to solve bacterial cellulose (BC) and hydroxypropyl chitosan (HPCS) together, and regenerated bacterial cellulose (RBC)/HPCS blend as-spun fibers were prepared by blending BC with HPCS via wet-spinning in the Lyocell process. Structure and properties of the blend as-spun fibers were characterized by different techniques, together with the antibacterial activity of the blend as-spun fibers against Staphylococcus aureus. Results revealed that HPCS was mixed with BC very well. The blend as-spun fibers showed a rough and folded surface morphology and an interior pore structure on the cross-section. Compared with pure RBC as-spun fibers, the blend as-spun fibers had lower degree of crystallinity and thermal stability. Although extension at break of the blend as-spun fibers was lower than the pure RBC as-spun fibers, their tensile strength and modulus had been enhanced obviously. The blend as-spun fibers were also found to exhibit excellent antibacterial activities against S. aureus.  相似文献   

7.
The radial structure of polyacrylonitrile (PAN) copolymer fibers was investigated quantitatively by etching layer by layer in an improved permanganic etchant; meanwhile the effect of the etchant on the fiber surface was taken into consideration. The aggregated structure (crystal size, crystallinity, orientation and density) and thermal stability of each circumferential layer of PAN fibers were determined in detail according to a model proposed in the study. A denser layer with a thickness of about 1 µm was observed in the subsurface (2 µm from the PAN fiber surface), possessing a greater crystal size and crystallinity as well as a relatively higher thermal stability than other layers. This layer was considered to be a barrier for the diffusion of oxygen into PAN fibers during the stabilization and accelerated the formation of a core-shell structure in the resulting carbon fibers.  相似文献   

8.
Sponge-gourd (SG) natural fibers obtained from Luffa cylindrica plant were chemically treated separately using alkali (5, 10, and 15 wt%), acetic anhydride (5, 10, and 15 wt%), and benzoyl chloride (5, 10, and 15 wt%). Both untreated and chemically treated SG fibers (SGFs) were subsequently characterized using a field emission scanning electron microscope, a Fourier transform infrared spectrometer, an X-ray diffractometer, a universal testing machine, and a thermogravimetric analyzer. Surface analysis by scanning electron microscopy shows that the alkali treatments promote better outer surface layer than other treatments of the SGF with the exposition of inner fibrillar structure, thereby increasing roughness of the fiber surface. Alkali treatment also improves the crystallinity and exhibits new chemical bond formation in the SGF. The tensile strength and Young’s modulus have been analyzed through a two-parameter Weibull distribution model, where a significant increase in mechanical property of benzoylated fibers has been observed. The thermal stability of the modified fibers is also found to increase by acetic anhydride treatment.  相似文献   

9.
Photoluminescence electrospun fibers were prepared from poly(aryl ether)s solutions. The porosity and wrinkle fibers could be observed by scanning electron microscopy (SEM). The effect of solution properties on fiber surface morphologies was studied. Meanwhile, the rough fiber surfaces could make the electrospun membranes possess water repellency. The contact angles of electrospun membranes for water were around 140°. The emission spectra of these membranes indicated that the fibers exhibited multi-color including sapphire blue, olive green and rose red. It could provide a proposal for improving flexible optoelectronic devices based on electrospun membranes of conjugated polymers.  相似文献   

10.
In this study, biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) fibers were prepared by a melt-electrospinning and treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. The effects of processing parameters on the melt-electrospinning of PLGA were examined in terms of fiber morphology and diameter. Among the processing parameters, the spinning temperature and mass flow rate had a significant effect on the average fiber diameter and its distribution. The water contact angle of melt-electrospun PLGA fibers decreased significantly from 123 ° to 55 ° (oxygen plasma treatment) or to 0 ° (ammonia plasma treatment) by plasma treatment for 180 sec, while their water content increased significantly from 2.4 % to 123 % (oxygen plasma treatment) or to 189 % (ammonia plasma treatment). Ammonia gas-plasma enhanced the surface hydrophilicity of PLGA fibers more effectively compared to oxygen gas-plasma. X-ray photoelectron spectroscopy analysis supported that the number of polar groups, such as hydroxyl and amino groups, on the surface of PLGA fibers increased after plasma treatment. Overall, the microfibrous PLGA scaffolds with appropriate surface hydrophilicity and fiber diameter could be fabricated by melt electrospinning and subsequent plasma treatment, without a significant deterioration of fiber structure and dimensional stability. This approach of controlling the surface properties and structures of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering.  相似文献   

11.
In this paper, the mulberry fibers were successfully obtained by a new pretreatment named alkali-assisted microwave plus biological enzymatic technique (AMBET). The morphology, microstructure, physico-mechanical and antibacterial properties of the mulberry bast fibers were investigated by means of scanning electron microscope (SEM), Fourier Transform-Infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), instron tensile tester and antibacterial testing. The results showed that impurities of the bast fibers could be removed by AMBET treatment. AMBET treated mulberry fiber was even, smooth and fine, and typical cellulose I in the mulberry fibers was confirmed by FTIR and XRD analysis. The crystallinity of the AMBET treated fibers was higher than that of the raw mulberry and chemical treated mulberry fibers. Thermal analysis indicated that the mulberry fibers had a good thermal stability. Moreover, the AMBET treated mulberry fibers showed excellent antimicrobial activities against S.aureus. The physical properties of the mulberry fibers indicated the AMBET treated mulberry fibers were ideal candidates for new textile materials.  相似文献   

12.
In this study, the preparation method and characteristics of silver (Ag) nanoparticle (NP) loaded polyamide 6 (PA6) nanocomposite and its antimicrobial activity against Klebsiella pneumonia and Staphylococcus aureus were investigated. The melt intercalation method was used to prepare a series of PA 6 nanocomposite fibers containing, 0; 1; 3; 5 % (wt.) Ag. PA6/Ag nanocomposite fibers exhibit increased antimicrobial efficiency with the increase of nanoparticle contents. On the other hand, thermal characterization tests show that the increased concentration of Ag nanoparticles reduces the mechanical properties due to their partial agglomeration leading to flaw generation. The crystallinity of the fibers was found to decrease about 10 % with increase of Ag to 5 %. This was attributed to faster cooling rate experienced in the presence of high thermal conductivity Ag particles.  相似文献   

13.
Biocomposites derived from polymeric resin and lignocellulosic fibers may be processed at temperatures ranging from 100 °C to 230 °C for durations of up to 30 min. These processing parameters normally lead to the degradation of the fiber's mechanical properties such as Young's modulus (E), ultimate tensile strength (UTS) and percentage elongation at break (%EB). In this study, the effect of processing temperature and duration of heating on the mechanical properties of coir fibers were examined by heating the fibers in an oven at 150 °C and 200 °C for 10, 20 and 30 min to simulate processing conditions. Degradation of mechanical properties was evaluated based on the tensile properties. It was observed that the UTS and %EB of heat treated fibers decreased by 1.17-44.00% and 15.28-81.93%, respectively, compared to untreated fibers. However, the stiffness or E of the fibers increased by 6.3-25.0%. Infra red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to elucidate further the influence of chemical, thermal and microstructural degradation on the resulting tensile properties of the fibers. The main chemical changes observed at 2922, 2851, 1733, 1651, 1460, 1421 and1370 cm−1 absorption bands were attributed to oxidation, dehydration and depolymerization as well as volatization of the fiber components. These phenomena were also attributed to in the TGA, and in addition the TGA showed increased thermal stability of the heat treated coir fibers with reference to the untreated counterparts which was most probably due to increased recrystallization and cross linking. The microstructural features including microcracks, micropores, collapsed microfibrils and sort of cooled molten liquid observed on the surface of heat treated coir fibers from the scanning electron microscope (SEM) could not directly be linked to the effect of temperature and durations of heating although such features may have largely account for the lower tensile properties of heat treated coir fibers with reference to untreated ones.  相似文献   

14.
This study is an attempt to investigate the feasibility of alkali pre-treatment to activate surface hydroxyl groups of cellulose fibers in order to enhance the deposition efficiency of silver nanoparticles (AgNPs) onto cotton fabrics. Cotton samples were pre-treated with various alkali solutions containing different earth metal hydroxides (LiOH, NaOH, and KOH). The as-prepared samples were then treated with aqueous silver nitrate followed by reduction treatment with aqueous ascorbic acid, which caused in situ formation of AgNPs on fiber surfaces. The surface structure of the fabrics was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and colorimetric data. The amount of silver was measured by using inductively coupled plasma-optical emission spectrometer (ICP-OES). Antimicrobial activity was measured against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It was established that alkali pre-treatment had a substantial effect on the formation and adsorption of AgNPs on the fibers. Alkali pre-treated samples were homogeneously coated by AgNPs with high surface coverage. Alkali type had significant effect not only on the amount of AgNPs on the surface but also on its size. High antibacterial activity against both Gram-positive and Gram-negative strains was also demonstrated, even after 10 cycles washing.  相似文献   

15.
Apocynum venetum (AV) fibers were extracted by the combination of low (28 kHz) and high frequency (53 kHz) ultrasonic treatment after aqueous alkali maceration. The surface impurities and cementing components between fibers in the range of 10–50 μm were removed by low frequency ultrasound. The surface impurities in the range of 2–8 μm, as well as the residuals in the surface depression and inner cavum of fibers were further eliminated by high frequency ultrasonic irradiation. The treatment did not change crystal structure of cellulose I of AV fibers and could lead to a higher degree of crystallinity. Meanwhile, the examination of mechanical properties showed that the AV fibers could be used for textile industry. It is demonstrated that the combination of low and high frequency ultrasound after alkali treatment is simpler, more controllable and more environment-friendly and is a promising degumming method for textile industry.  相似文献   

16.
Poly(m-phenylene isophthalamide) (PMIA) fibers play an irreplaceable role in the area of high-temperature resistance. It is usually difficult to dye PMIA fibers due to their rigid molecular structure and high crystallinity. In this study, the dope-dyed PMIA fibers with different amounts of pigment were fabricated by wet spinning. The properties of the pigment were analyzed, including size distribution and dispersive properties. The results showed that the pigment was easy to disperse in the fibers when the average diameter of the pigment was smaller than 500 nm. The color fastness of the colored PMIA fibers was tested, and their thermal properties and mechanical properties were also analyzed. The results of thermal gravity analysis (TGA) indicated that the colored PMIA fibers maintained good thermal performance. Compared to uncolored PMIA fibers, the colored PMIA fibers became lighter after exposing to simulated sunlight for 50 h. The breaking tenacity of fibers exceeded 2.0 cN/dtex, and the retentivity was above 80 % after being exposed to simulated sunlight for 50 h. These suggested the good mechanical performance of colored PMIA fibers. Dope-dyed PMIA fibers with good mechanical properties and thermal performance were successfully developed.  相似文献   

17.
Novel composite nanofibrous materials of poly(vinylidene fluoride) (PVDF) or poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were prepared by conjunction of electrospinning and electrospraying techniques. Simultaneous electrospinning of concentrated solution of PVDF or PVDF-HFP and electrospraying of suspension of ZnO in diluted PVDF or PVDF-HFP solution enable the preparation of materials consisting of fibers on which ZnO was deposited on the fibers’ surface (design type “on”). These fibrous materials were compared with materials consisting of PVDF or PVDF-HFP fibers in which ZnO was incorporated in the fibers (design type “in”) and which were obtained by one-pot electrospinning of a suspension of ZnO nanoparticles in concentrated PVDF or PVDF-HFP solution. The fiber morphology and the presence of ZnO “in” or “on” the fibers were observed by scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). The effect of the used technique on the type, size and shape of the obtained structures was discussed. The fibrous mats were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), contact angle measurements and mechanical tests as well. It was found that the decoration of fibers with ZnO resulted in increase of their thermal stability and hydrophobicity. The microbiological tests showed that the materials of design type “on” possessed strong antibacterial activity against the pathogenic microorganism Staphylococcus aureus. The results suggest that, due to their antibacterial activity, the obtained composite materials are suitable for wound dressing applications.  相似文献   

18.
Depositing of TiO2 nanoparticles on cellulose fiber surface has potential technological applications in the field of photocatalysis. With this motivation, multilayers composed of lignosulfonates (LS) and TiO2 nanoparticles were constructed on cellulose fiber surface via layer-by-layer (LBL) self-assembly technique. X-ray photoelectron spectroscopy (XPS), zeta potential measurement and atomic force microscopy (AFM) were used to characterize the LS/TiO2 multilayers on cellulose fiber surface. Moreover, the photocatalytic activities of modified cellulose fibers (decomposition of methyl orange and antibacterial test) were investigated. The decomposition efficiency of methyl orange for a (LS/TiO2)5 multilayer modified cellulose fibers was 74.7 % under 5 h UV irradiation. Photocatalytic decomposition efficiency of methyl orange by LS/TiO2 multilayer modified cellulose fibers under the same UV irradiation time increased linearly with the number of bilayers. Antibacterial tests results revealed that the cellulose fibers modified with LS/TiO2 multilayers exhibited excellent antibacterial activity against E.coil. The degree of E.coil growth inhibition for a (LS/TiO2)5 multilayer modified cellulose fiber reached as high as 93 %. In addition, the effect of LS/TiO2 multilayers on properties of handsheets made from modified cellulose fibers was also considered. The air permeability of the handsheet prepared from fibers modified with TiO2/LS multilayers had 6.1–24.3 % higher compared with that of handsheet prepared from original fibers. The wetting properties measurement results demonstrated that the water contact angle of handsheet oscillated with the increasing number of layers depended on building block which was in the outermost layer.  相似文献   

19.
Chemical treatment of natural fibers is a well-defined means of mechanical property improvement in natural fiberreinforced composites. An understanding of mechanical and thermal properties in these media is essential for evaluating heat transfer, thermal degradation, and overall performance of these composites over their product lifetime. However, very little information is available illustrating the effect of such treatment on the thermal properties of kenaf composites. Also, no study to date has reported the thermal conductivity of individual kenaf fibers. This study reports the effects of fiber treatment (in 6 % NaOH) on thermal transport in unidirectionally oriented kenaf-epoxy composites and individual kenaf fibers. The effective thermal conductivities and thermal diffusivities of chemically treated fiber composites show a general increase over untreated fiber composites (0.210 to 0.232 W/m/K at 28 °C, 0.206 to 0.234 W/m/K at 200 °C). This improvement may be attributed to improved interfacial contact between the fibers and epoxy matrix shown in microstructural images after chemical treatment. The thermal conductivity of individual fibers was evaluated at room temperature using two techniques. Results from both techniques showed slight increases after chemical treatment (0.58±0.53 to 1.0±0.13 W/m/K and 1.2±0.54 to 1.6±0.28 W/m/K) but lacked statistical significance. Any improvement in surface crystallinity after chemical treatment does not appear to affect overall fiber thermal conductivity. A better understanding of thermal transport in kenaf fibers and composites enables better estimation of the performance of these composites in different applications. Moreover, the thermal conductivities of individual fibers are useful in understanding the fiber’s contribution to conduction in different fiber reinforcement configurations.  相似文献   

20.
Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号