首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuously twisted polyacrylonitrile/viscose nanofiber core-spun yarns were fabricated through novel self-designed multi-nozzle air jet electrospinning set-up. The effect of voltage, solution flow rate, air flow rate and funnel rotating speed on coating rate of core-spun yarn, nanofiber diameter, twist level and mechanical property were discussed. The results showed that polyacrylonitrile/viscose nanofiber core-spun yarns with perfect nanofiber orientation and uniform twist distribution could be obtained at voltage of 32 KV, solution flow rate of 32 ml/min and air flow rate of 1000 ml/min, and the spinning speed could reach to 235.5 cm/min. The diameters of outer coated nanofiber distributed from 100 nm to 300 nm, and nanofiber coating rate could reach to 70.4 %. In addition, the strength and elongation at break increased from 30.82 MPa to 69.65 MPa and from 28.34 % to 43.29 % at the twist angle of 46.6 °, respectively.  相似文献   

2.
The formation of a symmetric electrospinning triangle zone (E-triangle) via a technique based on using two oppositely charged nozzles is described for fabricating continuous twisted nanofiber yarn of polyamide (Nylon 66). This study shows how changing the dimensions and geometry of the E-triangle influences the distribution of nanofiber tension and diameter in this zone, and consequently how it affects the nanofiber yarn strength. The twist effect on the E-triangle geometry was investigated by changing the rotational speed of the twister plate of values of 96, 160, 224 and 288 rpm. The results showed that by increasing the twist rate, the apex angle of the E-triangle increased, whereas the height and width of the Etriangle decreased. An energy method was adopted to study the distribution of tension on nanofibers in the E-triangle. Considering a constant spinning tension, it was observed that the gradient of the nanofiber tension curve was steeper and the extreme values of tension on nanofibers were increased by increasing the twist rate. Furthermore, the mean diameter reduction of nanofibers confirmed these results. It is concluded that mechanical properties of nanofiber yarn have been considerably improved by increasing the twist rate and changing the shape of the E-triangle.  相似文献   

3.
In order to fabricate continuously twisted nanofiber yarns, double conjugate electrospinning had been developed using two pairs of oppositely charged electrospinning nozzles. The principle and process of this novel yarn spinning method were analyzed, and the effect of applied voltage, nozzle distance between positive and negative, solution flow rate and funnel rotating speed on the diameters, twist level and mechanical properties of resultant PAN nanofiber yarns were investigated in this paper. The results indicated that electrospun nanofibers aggregated stably and bundled continuously at the applied voltage of 18 kV, the nozzle distance of 17.5 cm between positive and negative, the overall flow rate of 3.2 ml/h and the flow ratio of 5/3 for positive and negative nozzles. The resultant nanofiber yarns had favorable orientation and uniform twist distribution, and the twist level of nanofiber yarns increased with the increase of the ratio of funnel rotating speed and winding speed. The diameters and mechanical properties of nanofiber yarns depended on their twist level. The diameters of prepared PAN nanofiber yarns ranged from 50 µm to 200 µm, and the strength and elongation of PAN nanofiber yarns at break were 55.70 MPa and 41.31%, respectively, at the twist angle of 41.8 °. This method can be also used to produce multifunctional composite yarns with two or more components.  相似文献   

4.
Electrospinning is a simple and cost-effective method to prepare fiber with nanometer scale. More importantly, 3D flexible nanofiber yarns that fabricated by electrospinning have shown excellent application prospects in smart textiles, wearable sensors, energy storage devices, tissue engineering, and so on. However, current methods for preparing electrospinning nanofiber yarns had some limitations, including low yarn yield and poor yarn structure. In this paper, a stepped airflow-assisted electrospinning method was designed to prepare continuously twisted nanofiber yarn through introducing stepped airflow into traditional electrospinning system. The stepped airflow could not only help to improve nanofiber yield, but also good for controlling the formed nanofibers to be deposited in a small area. In addition, the experimental methods of single factor variables were used to study the effects of stepped airflow pressure, applied voltage, spinning distance, solution flow rate, air pumping volume and friction roller speed on nanofiber yarn yield, nanofiber diameter, yarn twist and mechanical property. The results showed that prepared nanofiber yarns exhibited perfect morphologies and the yield of nanofiber yarn could reach to a maximum of 4.207 g/h. The breaking strength and elongation at break of the prepared yarn could reach to 23.52 MPa and 30.61 %, respectively.  相似文献   

5.
In this study, various concentrations of polyethylene terephthalate (PET) polymeric solution were investigated to produce hollow nanofiber yarn. First, the electrospining apparatus was designed in a way that to put PVA multifilament in the core and to twist PET nanofibers onto multifilament yarn as a sheath simultaneously, followed by dissolving PVA yarn in hot water, PET hollow nanofiber yarn was produced. In this survey, it has been observed that the average thickness of sheath increased by increasing concentrations of PET polymeric solution. Results showed that maximum efficiency of extracting the PVA multifilament from the hollow yarn under certain conditions (concentration of 18 % (w/v) of PET, applied voltage of 10 kV, and flow rate of 0.0526 ml/h) was more than 85 %. The mechanical and physical properties of PET hollow yarns were investigated and indicated that the hollow nanofiber yarns at concentration of 30 % and 18 % polymeric solution had the lowest strength and the highest regain moisture, respectively.  相似文献   

6.
Nanofibers definitely hold great advantage and promise in filtration as they have very high specific surface area, which ensures greater probability of capturing the particles and hence, the filtration efficiency of the nanofiber filter media is high. Electrospun nanofibers are prohibitively expensive due to extremely low production rate. With recent advances in melt blowing technology, nanofibers could be produced at production rate few orders of magnitude higher than that of conventional single syringe electrospinning and hence, quite cost effective. Influence of air pressure and die to collector distance (DCD) were studied on the number average fiber diameter for the nanofibers as well as the performance properties of the nonwoven webs, each factor at three discrete levels. The nanofibers were as fine as 260 nm. A very encouraging observation of the study is very high values of quality factor observed for nanofiber nonwoven filter media. In order to compare the filtration efficiency of different nanofiber nonwoven media samples with different basis weight, a novel term of specific filtration efficiency is proposed and was found that the specific filtration efficiency with the increase in DCD or air pressure.  相似文献   

7.
In view of the interest in wicking properties of these flexible structures, analysis of the wicking phenomena in nylon 6.6 nanofiber yarns is carried out by considering the twist rate effects. A novel method is used based on adding a pH-sensitive dye to yarn interstructure and the analysis of color alteration of nanofiber yarn structure, resulting from a shift in pH, during the capillary rise of distilled water. The results show that the addition of pH- sensitive dye has no influence on the average nanofiber diameter and the wicking behavior of yarns. This study shows that in short durations, the kinetic of the capillary rise follows the Lucas-Washburn equation. The Lambertw, a mathematical function, has been incorporated, which helps measure an equivalent structural factor of nanofiber yarns and vertical wicking height at any given time considering the gravitational effects. The statistical results show that the average of equilibrium wicking height and capillary rise rate coefficient tend to decrease with increasing the nanofiber yarn twist, due to the reduction of continuity and size of capillaries.  相似文献   

8.
This paper focused on using response surface methodology (RSM) and artificial neural network (ANN) to analyze polyurethane (PU) nanofibers morphology synthesized by electrospinning. The process was characterized in detail by using experimental design to determine the parameters that may affect the nanofibers morphology such as polymer concentration, a tip to collector distance and applied voltage. It was concluded that solution concentration plays an important role (relative importance of 79.85 %) against nanofibers diameter and its standard deviation. Based on the results, applied voltage has a different effect on the nanofiber diameter at low and high solution concentrations. Moreover, the tip to collector distance parameter has no significant impact on the average nanofiber diameter. The finest PU nanofiber (201 nm) was obtained from experimental under conditions of: 9 w/v% polymer concentrations, 12 cm tip to collector distance and 16 kV applied voltage. The results show a very good agreement between the experimental and modeled data. It was demonstrated that both models (specially, in case of neural network) are excellent for predicting diameter of PU nanofibers. Furthermore, numerical optimization has been performed by considering desirability function to access the region in design space that introduces minimum average diameter.  相似文献   

9.
The aim of this paper is to investigate vertical wicking in polyacrylonitrile (PAN) electrospinning nanofiber yarn using image analysis. Colored liquid rising phenomenon into the yarn and the distance of liquid rise were determined as a function of time. The kinetics of capillary rise follows the Lucas-Washburn equation. The results show that capillary rise rate coefficient is being reduced with increasing yarn twist, due to the reduction of continuity and size of capillaries. Increasing heat treatment stretch from 0 % (draw ratio=1) to 50 % (draw ratio=1.5) increases the capillary rise rate coefficient, due to the more homogeneity of capillary spaces in the yarn structure and increasing heat treatment stretch from 50 to 100 % (draw ratio=2) reduces capillary rise rate coefficient, because of the low capillary length. The present study indicates that an appropriate choice in production parameters of nanofiber yarn is all important in obtaining the desired properties of capillary rise.  相似文献   

10.
This study aims to develop a new approach for fabricating hollow nanofibrous yarns by engineering a triple-layer structure (polyvinyl alcohol (PVA) multifilament core surrounded by a layer of PVA nanofibers and a polylactic acid (PLA) nanofiber outer layer). After fabrication of this 3-layer structure, the core portion was extracted, leaving the outer layer intact after dissolving the PVA nanofibers in water. To determine the optimum thickness of the outer layer, hollow nanofiber yarns with five different thicknesses were produced. A hollow nanofiber yarn was also produced using a common method to enable comparison of the methods. In the common method, a core sheath yarn consisting of a PVA multifilament core and a PLA nanofiber outer layer was fabricated, and a hollow yarn was produced by placing the core yarn in hot water. The results revealed facilitation of core extraction from the yarn body of the new 3-layer structure, which occurred due to rapid dissolution of the middle layer. The wicking behavior in the hollow yarn fabricated using the novel method followed the Locus Washburn equation and that of the hollow yarn produced from the core sheath yarn deviated from it. The results demonstrated that tensile properties of hollow nanofiber yarns were improved by increasing the thickness. Furthermore, hemolysis and cytotoxicity assays indicated that the fabricated hollow nanofibrous structure is non-toxic and blood compatible, indicating its potential for use in biomedical applications such as vascular scaffolds.  相似文献   

11.
The current research discusses the efforts to achieve a Poly(lactide-co-glycolide)(PLGA) nanofiber yarn using two differently charged nozzles with potential application as surgery suture. First, electrospinning parameters such as solution concentration, applied voltage, feed rate were optimized to produce yarn with smooth nanofibers. In order to improve the properties of produced suture, heat setting setup was developed. Two heat setting techniques, including hot water and dry heat were applied, and the influence of the heat setting process on the mechanical properties of yarn was studied. The results showed that heat setting with boiling water was the best method. At first strength, E-modulus and extension of prepared suture were 36.6 MPa, 0.9 GPa and 68.8 % respectively. After improvement with heat setting, strength and E-modulus increased to 63.7 MPa, 2.7 GPa respectively and extension decreased to 29.7 %. Finally, in order to analyze knot performance, two types of surgical knot (square and surgeon) were used, and mechanical properties were investigated. The presence of knot lessens mechanical properties for each two type. Square knot showed better mechanical properties than surgeon’s knot. With square knot strength, E-modulus and extension were 62.1 MPa, 2.1 GPa, 28.6 %, respectively. In vitro study of nanofiber yarn degradation behavior showed that the mechanical properties were decreased. This could be due to greater surface area of nanofibers exposed to surrounding environment.  相似文献   

12.
Poly(vinyl alcohol) (PVA)/zirconium oxide (ZrO2) composite nanofibers with a skin-core structure were prepared and the effect of ZrO2 particle content on uniform web formation was investigated. The optimized polymer concentration, tip to collector distance, and applied voltage for electrospinning were 11 wt%, 12 cm, and 20 kV, respectively. Skin-core PVA/ZrO2 composite nanofibers containing up to 12 wt% ZrO2 were successfully prepared, but it was difficult to obtain PVA/ZrO2 composite nanofiber webs via conventional electrospinning. Increasing the amount of ZrO2 caused the morphology of the PVA/ZrO2 composite nanofibers to become a non-uniform nanoweb with irregular nanofiber diameters. While it was difficult to obtain a uniform nanofiber web containing a content of ZrO2 over 6 wt% for conventional electrospinning, a more uniform nanofiber web could be obtained at up to 9 wt% ZrO2 using a skin-core dual nozzle. More uniform webs could also be obtained when ZrO2 was in the skin rather than the core.  相似文献   

13.
Electric field plays a key role in electrospinning process for nanofiber and nanofiber yarn producing. The electric field distribution of the yarn manufacturing system is simulated by using finite element method analysis. The effects of electric field distribution and intensity were studied to analyze the influence of the electric field on the electrospun nanofiber yarn surface morphology, mechanical, thermal and water absorption properties. The results show that the morphology and diameters of nanofiber and yarn were obviously affected by the electric field with changing the needle distance and applied voltage, which further influence the mechanical performance of the yarn. The needle distance does not much affect the thermal property of the PSA electrospun yarn, whereas the yarn obtains better thermal resistance properties at voltage of 25 kV. The nanoyarn electrospun and assembled under higher applied voltage is proved to have a better wicking property in our research.  相似文献   

14.
This study examined the effects of the total porosity, pore size, and cover factor on the moisture and thermal permeability of woven fabrics made from DTY (draw textured yarns) and ATY (air jet textured yarns) composite yarns with hollow PET (polyethylene terephthalate) yarns. The wicking of the hollow composite yarn fabrics was found to be superior to that of the high twisted yarn fabrics, which may be due to the high porosity in the hollow composites yarns, but this was not related to the cover factor. The drying characteristics of the hollow composite yarn fabric with high porosity were inferior compared to the high twisted yarn fabrics due to the large amounts of liquid water in the large pores, which resulted in a longer drying time of the fabric. The thermal conductivity of the hollow composite yarn fabrics decreased with increasing measured pore diameter due to the bulky yarn structure. The effects of the hollowness of the yarn on the thermal conductivity were more dominant than those of the yarn structural parameters. The air permeability increased with increasing measured pore diameter but the effects of the cover factor on the air permeability were not observed in the hollow composite yarn fabrics. The effects of porosity on the moisture and thermal permeability of the woven fabrics made from the hollow composite filaments were found to be critical, i.e., wicking and air permeability increase with increasing porosity. In addition, the drying rate increased with increasing porosity and the thermal conductivity decreased with increasing pore diameter, but were independent of the cover factor.  相似文献   

15.
A proper collector is designed and examined in electrospinning process to produce electrospun nanofibers with favored mechanical propertied. The quality of product was controlled by changing and optimizing the process variables, namely electrospinning time, gap distance, and collector rotating speed in a manner that well-aligned yarns were fabricated from polyacrylonitrile (PAN) dilute solutions. It was found that the tensile characteristics of fabricated yarns are greatly dependent on the process variables. Incorporation of multi-walled carbon nanotubes (MWCNTs) into the polymer solution revealed improvement to the yarn strength because of enhancement in alignment of the filaments. The state of fiber alignment and dispersion of MWCNTs were detected by means of scanning electron microscopy. It was illustrated that combination of nanofibers and microfibers gives PAN/MWCNTs composite nanofibers with high surface area and high porosity to satisfy sophisticated users.  相似文献   

16.
In order to study the effect of the structure of vortex tube on the yarn performance in jet vortex spinning, 8 groups of vortex tube structure were designed, and the corresponding 3D computational fluid dynamic models were established to numerically simulate the airflow in the nozzle. Through analysis of the characteristics of air flow inside the different nozzles, such as pressure distribution and velocity vectors, the motion of drafted fibers and performances of yarns were discussed. Simulation results show that when the structure of vortex tube has a transition region between the cylindrical and conical cavity (CCT) and the outlet of jet orifice is located at the junction of cylindrical and transition cavity, the airflow state within the nozzle has a large negative pressure with appropriate axial and tangential velocity, which is conducive to the formation of the open-ends of fibers and twisting, and the yarn quality turns out to be better. Spinning experiment results prove that the yarn strength reaches the maximum value, while the unevenness of breaking strength meets the minimum, and the other yarn properties are superior, which shows a good agreement with the simulation results. Thus, the numerical simulation can provide the theoretical as well as quantitative reference for the vortex tube design in the coming future.  相似文献   

17.
The aim of this study was to understand the ±45 ° directional off-axis tensile properties of the developed two dimensional (2D) multistitched multilayer E-glass/polyester woven composites. It was found that the off-axis tensile strength of the unstitched structure was slightly higher than those of the multistitched structures. The reason was that the multistitching process caused the filament breakages. It was also found that when the stitching direction and stitching density in structures increased, their off-axis tensile modulus decreased. Therefore, stitching directions, stitching density and stitching yarn on the composite structures were considered as important parameters. All structures under the off-axis tensile load had normal deformation, or angular deformation or shrinkage in width. In addition, both the normal deformation and the shrinkages in width occurred in most of the two and four directional stitched structures. On the other hand, four directional Kevlar® 129 yarn dense stitched E-glass/polyester structure showed only shrinkage in width after angular deformation. This could be considered as a new failure mode because of the multistitching. These results indicated that the stitching directions and density generally influenced the off-axis tensile properties of the multistitched E-glass/polyester woven composites.  相似文献   

18.
In this study, polyacrylonitrile was used as the nanofiber membrane material. Through A two-stage continuous process, namely, oxidation process and carbonization and activation process, an activated nanofiber membrane material was fabricated. Subsequently, the membrane underwent high-temperature heat treatment (1100-1500 °C) to explore the effect of temperature on its properties. Charge/discharge rate was employed to determine the capacitance retention ratio to evaluate the applicability of the fabricated membrane in high-power super capacitor electrodes. The results revealed that in the treated membrane, the lattice size increased from 1.24 nm to between 3.20 and 4.72 nm. In addition, the volume resistivity was reduced from 6 Ω-cm to between 9.70E-2 and 3.85E-2 Ω-cm, substantially improving the electric conductivity. The activated carbon nanofiber membrane treated with high temperature at 1100 °C exhibited the highest capacitance of 704 F/g at a scan rate of 5 mV/s.  相似文献   

19.
Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to 5.6 wt%. The activity of immobilizedα-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at 25°C by retaining more than 90 % of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than 45% of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.  相似文献   

20.
This study employed a SKF draft system equipped with an additional spreading device to form a high performance flame-retardant composite yarn. For mixing the spread Technora® filaments and Stretch-Broken oxidized fibers, nip of the front rollers was arranged for best dispersion. The yarn unevenness (CV %), strength, abrasion-resistance, and Limited Oxygen Index (LOI) of the composite yarn were evaluated. The cross-sections of the actual composite yarn were observed to assess its structure and the effect on yarn performance. The experimental results showed that the yarn CV% is worse as the yarn count (Tex) tend to be finer. This would be an optimum condition adopting 30 TM for the yarn evenness and yarn strength. After abrasion test, the residual strength of composite yarns remains above 80 %. The LOI value depends on the coverage degree of oxidized fiber outside the yarn surface, and there tended to be a lower LOI value with finer yarn count (Tex). Overall, the T/O composite yarn with uniform distribution structure can provide high performance and flame-retardancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号