首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.

Key message

Climate factors affect seed biomass production which in turn influences autumn wild boar spatial behaviour. Adaptive management strategies require an understanding of both masting and its influence on the behaviour of pulsed resource consumers like wild boar.

Context

Pulsed resources ecosystem could be strongly affected by climate. Disantangling the role of climate on mast seeding allow to understand a seed consumer spatial behaviour to design proper wildlife and forest management strategies.

Aims

We investigated the relationship between mast seeding and climatic variables and we evaluated the influence of mast seeding on wild boar home range dynamics.

Methods

We analysed mast seeding as seed biomass production of three broadleaf tree species (Fagus sylvatica L., Quercus cerris L., Castanea sativa Mill.) in the northern Apennines. Next, we explored which climatic variables affected tree masting patterns and finally we tested the effect of both climate and seed biomass production on wild boar home range size.

Results

Seed biomass production is partially regulated by climate; high precipitation in spring of the current year positively affects seed biomass production while summer precipitation of previous year has an opposite effect. Wild boar home range size is negatively correlated to seed biomass production, and the climate only partially contributes to determine wild boar spatial behaviour.

Conclusion

Climate factors influence mast seeding, and the negative correlation between wild boar home range and mast seeding should be taken into account for designing integrated, proactive hunting management.
  相似文献   

2.

??Context

It is assumed that climate change will favour European beech (Fagus sylvatica L.) to Norway spruce (Picea abies [L.] Karst.) at its northern range margins due to climate change and induced disturbance events.

??Aims

An old-growth mixed forest of spruce and beech, situated near the northern beech margin, was studied to reveal effects of disturbances and response processes on natural forest dynamics, focussing on the understory.

??Methods

We carried out analyses on understory dynamics of beech and spruce in relation to overstory release. This was done based on a sequence of stand and tree vitality inventories after a series of abiotic and biotic disturbances.

??Results

It became apparent that beech (understory) has a larger adaptive capacity to disturbance impacts and overstory release (68 % standing volume loss) than spruce. Understory dynamics can play a key role for forest succession from spruce to beech-dominated forests. Disturbances display an acceleration effect on forest succession in the face of climate change.

??Conclusion

Beech is poised strategically to replace spruce as the dominant tree species at the study area. Due to an increasing productivity and a lower risk of stand failure, beech may raise into the focus of forestry in southern Sweden.  相似文献   

3.

Key message

In Appalachian hardwood forests, density, stem size, and productivity affected growth during drought for red oak, but not white oak species. Minor effects of density suggest that a single low thinning does little to promote drought resilience for oaks in the region.

Context

Management is increasingly focused on promoting resilience to disturbance. Because stand density can modulate climate-growth relationships, thinning may be an adaptation strategy that promotes resistance/resilience to drought.

Aims

We examined how density, manipulated via thinning, stem size, and site productivity, influences the drought response of northern red, black, chestnut, and white oak.

Methods

We modeled the role of density, stem size, and site productivity on resistance, recovery, and resilience during two drought events.

Results

Chestnut and white oak displayed greater resistance, recovery, and/or resilience than did northern red and black oak. For black oak, density and stem size negatively affected resistance during the first and second drought, respectively. Density, stem size, and site productivity had no effect on chestnut and white oak.

Conclusion

The lack of sensitivity of chestnut and white oak to the ranges of density, stem size, and site productivity observed in this study and generally better resistance, recovery, and resilience suggests that management focused on the maintenance of these species, as opposed to a single silvicultural low thinning, may be a possible strategy for sustaining the growth and productivity of oak species in Appalachian hardwood stands. Drought response as affected by alternative thinning interventions should be evaluated.
  相似文献   

4.

Context

Fine scale regeneration patterns of coexistent species are influenced by regeneration mechanisms and microsite requirements. Spatial patterns may be either disjunct or overlapping, which will determine competitive effects and microsite dominance, and future forest composition.

Aims

Using American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marshall) as an example, three hypotheses were tested: (1) random beech spatial patterns, (2) clumped spatial patterns of small sugar maple seedlings, and (3) disjunct beech and sugar maple patterns.

Methods

Individual stems were sampled in a contiguous grid of 1-m2 quadrats across a 576-m2 area at three sites. Densities were separated into three height classes (≤30 cm, 30–90 cm, and?>?90 cm, ≤4 cm diameter at breast height). Spatial statistics and regression were used to analyze spatial patterns and correlations.

Results

Beech and seedling sugar maple patterns were patchy, rejecting the first and not rejecting the second hypotheses. Hypothesis three was rejected because patches of the two species overlapped with advance regeneration beech overtopping sugar maple.

Conclusion

Patchy patterns of advance regeneration beech and post-harvest sugar maple establishment suggest spatiotemporal niche partitioning. Beech had a competitive height advantage following harvest, but sugar maple still occurred in beech-free patches and beneath overtopping beech at a fine scale. Self-replacing beech patterns will ensure the species will continue dominance unless a selective chemical or manual treatment is applied that removes beech and releases sugar maple.  相似文献   

5.

?Context

Understanding tree interactions requires an insight into their spatial distribution.

?Aims

We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated).

?Methods

We established twelve 0.64-ha plots in natural bottomland hardwood stands in the southeastern USA.

?Results

Spatial point pattern analyses (Ripley’s K, L, and L 12) indicated that, when species were combined, trees were frequently aggregated and less commonly overdispersed. Plots with larger trees were more likely to exhibit overdispersion, confirming a shift to this pattern as trees grow. The intraspecific pattern of cherrybark oak and water oak was either aggregated or random. Sweetgum was aggregated on all plots and always at smaller distances (less than 5 m) than the two oak species. Intraspecific overdispersion was very rare. Interspecific segregation among the two oak species was more commonly observed (six plots) than aggregation (one plot). Cherrybark oak and sweetgum were segregated at some scale on seven of the 12 plots and aggregated on only two plots.

?Conclusion

The results from the analyses suggest that strong interspecific competition may result in segregation of trees from different species, while weaker intraspecific competition may lead to aggregations of conspecifics.  相似文献   

6.

Context

Projections of species distribution models under future climate are usually based on long-term averages. However, singular extreme drought events presumably contribute to the shaping of distribution limits at the retreating low-elevation xeric limits.

Methods

The objectives of this study were to set up a distribution model based on extreme drought events (EDM), which uses sanitary logging information as a proxy of vitality response of beech, and compare it with the results of classical species distribution models (SDMs).

Results

Predictions of the EDM for 2025 were in agreement with those of the SDM, but EDM predicted a more serious decline in all regions of Hungary towards the end of the century.

Conclusion

These results suggest that the predicted increase in frequency and severity of drought events may further limit the distribution of beech in the future.  相似文献   

7.

? Context

The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

? Aims

The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

? Material and methods

Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

? Results

The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

? Conclusion

Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

8.

Context

Loss of woodlands and degradation of vegetation and soil have been described for all Mediterranean-type ecosystems worldwide. In the Western Iberian Peninsula, overexploitation of evergreen cork oak land use systems has led to soil erosion, failures in oak recruitment, and loss of forests. Degraded and dry sites are quickly colonised by pioneer heathland rockrose (Cistus spp.) shrubs forming highly persistent patches.

Aims

Although traditionally shrublands have been considered as a transient successional state, we present evidence that they can represent persistent alternative states to former cork oak forests.

Review trends and conclusions

We first describe how Mediterranean vegetation evolved in the Iberian Peninsula and the role of fire and long-term human management as main disturbances. We then discuss alternative pathways through state-and-transition models indicating the ecological and land use variables that halt cork oak regeneration and recruitment and drive vegetation transitions towards persistent shrublands. Unless concerted management actions and restoration programmes are undertaken, the cork oak land use systems will not be sustainable.  相似文献   

9.

Context

Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

Aims

The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

Methods

The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

Results

Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

Conclusion

Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

10.

? Context

Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

? Aims

The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

? Methods

We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

? Results

This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

? Conclusions

Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   

11.

Context

Harvesting of Mediterranean oak coppice forests has been progressively suspended on a share of cover over the last decades. Positive growth trend in outgrown coppices no longer harvested on short rotations now drives natural forest restoration on wide areas, and it represents a potential carbon sink in view of global warming.

Aims

Our goals were to estimate carbon (C) and nitrogen (N) content per compartment in two deciduous oak outgrown coppice forests, aged differently and growing under unequal site quality, to verify whether C concentration across compartments is in agreement with the conventional conversion rate of 0.5.

Methods

Ecosystem C and N pools were assessed by multiplying the whole coppice mass (combining specific allometric functions, root-to-shoot ratio, and soil sampling) by respective C and N concentrations.

Results

The results point out that the largest percentage of N was stored in 15-cm topsoil (84.06 and 73.34 % at the younger and older site, respectively), whereas the proportion of organic ecosystem C pool was more variable, as a consequence of the amount and allocation of phytomass. We found that, in most cases, C concentration was less than the conventional conversion rate of 0.5, especially in deadwood, O layer, and root compartments.

Conclusion

The findings provide further knowledge of C and N storage into these new built-up forest types and the evidence that a detailed analysis may get higher accuracy in the pools estimate, producing a more reliable outlook on dynamics and climate change mitigation ability of these systems.  相似文献   

12.

? Context

Powdery mildew is one of the most common diseases of oaks in Europe. After alarming reports in the beginning of the twentieth century following the presumed introduction of the invasive fungus, the disease has become familiar to foresters. However, its impact may vary greatly according to intrinsic and extrinsic factors.

? Aims

We aimed at providing updated and synthesised information on the impact of powdery mildew on oak and on the effects of environment on disease.

? Methods

A comprehensive literature review was performed, including old reports of the early epidemics to more recent data.

? Results

Tree growth patterns are of critical importance to explain the severity of the disease and the differences between juvenile and mature trees. A critical element, especially for infection of mature trees, is the availability of spores during the production of the first leaf flush. High disease impact is often related to modified growth patterns, either by environmental factors (insects or frost) or silvicultural practices (e.g., coppicing).

? Conclusion

Powdery mildew can have important impacts in natural oak regenerations and a significant role in decline of mature trees. Climate change might influence the disease severity mainly by altering the host pathogen phenological synchrony. Process-based models are required for reliable predictions.  相似文献   

13.

Context

Mediterranean open woodlands (dehesa) have faced a dual process of intensification and abandonment of grazing which has resulted in alteration of the understory vegetation.

Aims

We analysed the effects of land use changes on the physiological status of holm oak in different open woodlands (dehesa) in southern Iberian Peninsula.

Methods

In an area of extensive grazing, we selected six paired plots (one grazed, one abandoned) and grouped them by habitat types according to understory composition (nearly all monospecific Cistus ladanifer L. shrub or mixed shrub). Six plots of moderate and heavy grazing intensity were chosen within a settled area of livestock use. Shoot growth, macronutrient concentrations and water content were assessed in samples of holm oak leaves.

Results

Abandonment of grazing affected some nutrient concentrations and water content of holm oak leaves, but the effects were different according to habitat type. C. ladanifer shrub reduced N and P concentrations and water content while mixed shrub increased P concentration and water content. High grazing intensity improved shoot growth and leaf N and Mg concentrations.

Conclusion

Extensive grazing could be a useful management tool to enhance growth, nutritional and water status of holm oak in a habitat with limited resources such as Mediterranean open woodlands (dehesa).  相似文献   

14.

Context

??Dehesas?? are savanna-like ecosystems of human origin that extend broadly in the Mediterranean area of the Iberian Peninsula. They consist of scattered oaks (mainly Quercus ilex subsp. ballota L. holm-oak), an annual grassland layer and interspersed shrubs. These ecosystems, used for grazing and wild game, support high plant and animal biodiversity and provide important environmental services. At present, Mediterranean ??dehesas?? are endangered by the lack of oak regeneration.

Aims

This paper analyses the efficiency of: (1) using shrubs as nurse plants; (2) drip irrigation of seedlings during summer; and (3) a combination of the two methods for the restoration of a ??dehesa?? in a mid-mountain Mediterranean area of southern Spain.

Methods

Different techniques were tested to improve the recruitment of holm-oak seedling during a 3-year field experiment: (1) acorn plantation in open spaces, irrigating seedlings during the first dry season; (2) acorn plantation beneath the canopy of Myrtus communis L. and (3) both methods combined.

Results

There was a large facilitative effect of myrtle for the recruitment of holm-oak seedlings, regardless of the supply of irrigation. This effect was associated with a large decrease in air temperature and photosynthetically active radiation beneath myrtle canopies. By contrast, summer irrigation of seedlings planted in open spaces did not improve seedling survival after 3 years despite a small and transient positive effect on seedling survival during the 1st year.

Conclusion

The use of evergreen shrubs, such as myrtle, as nurse plants may be considered to restore ??dehesas?? instead of expensive seedling irrigation techniques. Several studies have promoted abandoning grazing to increase holm oak self-regeneration in ??dehesas??. However, creating closed patches of naturally occurring evergreen shrubs could provide suitable sites for oak planting when necessary, thus enhancing seedling recruitment without damaging the environmental and economic value of these ecosystems.  相似文献   

15.

Context

Parasites can induce strong effects on their host’s growth, not only as a result of host resource exploitation (growth loss) but also with a potential adaptive value for host (tolerance response) and themselves (increased transmission).

Aims

We assessed these three types of phenotypic changes in oak seedlings infected by powdery mildew.

Methods

A manipulative field experiment with three levels of parasite inoculum was designed in order to tease apart infection from genetic effects on oak growth. Seedlings were monitored during 3 years for height growth, phenology and infection.

Results

Powdery mildew infection induced both significant growth loss and qualitative changes in plant architecture. The most striking and unexpected change was increased growth polycyclism in infected seedlings. This benefitted both the host as a form of compensation for infection-caused height loss, and the pathogen, by increasing sporulation.

Conclusion

The study highlights the effect of parasites in the expression of plant phenotypic traits, such as phenology and ultimately tree architecture. Both host tolerance and parasitic manipulation may be involved in the observed changes in growth patterns. These results suggest a complex interplay between development and defence in trees and emphasize the need to better assess tolerance mechanisms when considering the defence strategies of trees against pathogens.  相似文献   

16.

Key message

In the African rim of the Western Mediterranean Basin, cork oak forests and pine plantations coexist. Under similar fire regimes, cork oak forest is more resilient in terms of habitat structure (canopy, understory, and complexity of vegetation strata) than pine plantation. By contrast, both woodland types show similar resilience in plant species composition. Resilience in habitat structure varies between the two woodland types because of the resprouting and seeding strategies of cork oak and pine species, respectively. These differences can be relevant for the conservation of biodiversity of forested ecosystems in a future scenario of increased fire frequency and scale in the Mediterranean basin.

Context

Wildfires have major impacts on ecosystems globally. In fire-prone regions, plant species have developed adaptive traits (resprouting and seeding) to survive and persist due to long evolutionary coexistence with fire. In the African rim of the Western Mediterranean Basin, cork oak forest and pine plantation are the most frequently burnt woodlands. Both species have different strategies to respond fire: cork oak is a resprouter while pines are mostly seeders.

Aims

We have examined the hypothesis that pine plantations are less resilient in habitat structure (canopy, understory, diversity of vegetation strata) and plant composition than cork oak woodlands.

Methods

The habitat structure and plant species composition were measured in 30 burnt and 30 unburnt 700-m transects at 12 burnt sites from north-western Africa, where the two forest types can coexist. Habitat structure and plant species composition were compared between burnt and unburnt transects from cork oak and pine plantation woodlands with generalized linear mixed models and general linear models.

Results

The results showed significant interaction effect of fire and forest type, since cork oak forest was more resilient to fire than was pine plantation in habitat structure. By contrast, both forest types were resilient to fire in the composition of the plant communities, i.e., plant composition prior to fire did not change afterwards.

Conclusion

The higher structural resilience of cork oak forest compared to pine plantation is related to the resprouting and seeding strategies, respectively, of the dominant tree species. Differences in the responses to fire need to be considered in conservation planning for the maintenance of the Mediterranean biodiversity in a future scenario of changes in fire regime.
  相似文献   

17.

? Context

The carbon isotope composition of the CO2 efflux (δ13CE) from ecosystem components is widely used to investigate carbon cycles and budgets at different ecosystem scales. δ13CE, was considered constant but is now known to vary along seasons. The seasonal variations have rarely been compared among different ecosystem components.

? Aims

We aimed to characterise simultaneously the seasonal dynamics of δ13CE in different compartments of two temperate broadleaved forest ecosystems.

? Methods

Using manual chambers and isotope ratio mass spectrometry, we recorded simultaneously δ13CE and δ13C of organic matter in sun leaves, current-year twigs, trunk bases and soil in an oak and a beech forest during 1 year.

? Results

In the two forests, δ13CE displayed a larger variability in the tree components than in the soil. During the leafy period, a pronounced vertical zonation of δ13CE was observed between the top (sun leaves and twigs with higher values) and bottom (trunk and soil with lower values) of the ecosystem. No correlation was found between δ13CE and δ13C of organic matter. Causes for these seasonal variations and the vertical zonation in isotope signature are discussed.

? Conclusion

Our study shows clear differences in values as well as seasonal dynamics of δ13CE among different components in the two ecosystems. The temporal and local variation of δ13CE cannot be inferred from organic matter signature or CO2 emission rates.  相似文献   

18.

Context

High temperature stress in nurseries germinating Eucalyptus globulus seed is an important problem affecting germination synchrony and rate. Where there is a risk of high-temperature stress, then the choice of female parent may be important. This issue is particularly relevant to the production of full-sib families from mass-supplementary pollination where there may be opportunities for seed producers to manipulate the directionality of the crossing done in seed orchards.

Aims

This study aimed to quantify the maternal versus paternal influence of seed sensitivity to high temperature stress during germination.

Methods

A diallel crossing scheme involving four genotypes was used to test the relative importance of male and female genetic influences on the germination and development of E. globulus seed and their response to high temperature stress. Seed was germinated at optimum (25°C) and supra-optimal (32°C and 37°C) temperatures, and six traits describing the proportion and rate of seed germination and early seedling development were assessed.

Results

Both paternal and maternal effects affected the germination response, arguing for at least some influence of the nuclear genotype of the embryo. However, the response to high temperature stress was more influenced by the maternal than paternal parent.

Conclusion

Both the male and female genotype may affect various aspects of seed germination and early seedling development independent of seed size; however, some facets of the germination response will be mainly affected by the female parent.  相似文献   

19.

Context

In response to waterlogging, pedunculate oak is known to develop adventitious roots and hypertrophied lenticels. However, to date, a link between these adaptations and the ability to maintain net CO2 assimilation rates and growth has not been demonstrated.

Aims

The aim of this study was to explore the cause–effect relationship between the ability to form morphological adaptations (hypertrophied lenticels and adventitious roots) and the capacity to maintain high assimilation rate and growth.

Methods

The occurrence of morphological adaptations and the parameters of photosynthesis were monitored over 20 days of waterlogging in 5-week-old pedunculate oak seedlings presenting similar morphological development.

Results

Based on the development or not of morphological adaptations, the following three categories of responses were identified: development of hypertrophied lenticels and adventitious roots, development of hypertrophied lenticels alone, and the lack of development of adaptive structures. These categories, ranked in the order given, corresponded to decreasing levels of initial net CO2 assimilation rate growth and photosynthesis parameters observed during waterlogging.

Conclusion

We observed a two-way cause–effect relationship between the capacity to form adaptive structures and the assimilation rate. Indeed, the initial assimilation rate determined the occurrence of hypertrophied lenticels and growth during stress, and then the development of morphological adaptations enhanced the ability to maintain assimilation levels during the stress.  相似文献   

20.

? Context

Dispersal and recruitment play a critical role in determining the abundance and the spatial structure of regeneration.

? Aim

In this study, we estimated landscape scale seed dispersal using the inverse modeling method by fitting seedling counts to seed tree location and fertility in the European silver fir Abies alba Miller.

? Methods

Seed trees and seedlings from three age cohorts were counted in 30 plots on Mont Ventoux (southeastern France) at elevations from 995 to 1,605?m, where the following ecological variables were measured: elevation, slope, aspect, light availability, and tree density. We developed and fitted a dispersal model, including a new parameter, recruitment rate, which depended both on the ecological characteristics of the plots and on seed production.

? Results

Elevation was the factor that affected seedling recruitment the most, with an optimum value at around 1,200?m. Estimated A. alba seed dispersal distances were short (median values for the three cohorts, respectively, 16.4?C13.2?C19.6?m).

? Discussion

We demonstrated that including the ecological characteristics of plots and post-dispersal recruitment processes realistically reduced estimates of seed dispersal distances which are otherwise grossly over-estimated using inverse modeling procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号