首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of serum thyroxine (T4) and 3,3',5-triiodothyronine (T3) were determined in 7 clinically healthy adult dogs before and after administration of freshly reconstituted thyrotropin (TSH) and TSH that had been previously reconstituted and frozen for 1, 2, and 3 months. The 4 TSH response tests were performed at 30-day intervals by collecting blood samples for serum T4 and T3 determinations before and 4 and 6 hours after IV administration of TSH (0.1 U/kg of body weight). Baseline serum concentrations of T4 and T3 were similar at each of the 4 sample collection times over the 3-month period of the study. Mean serum concentrations of T4 and T3 increased significantly (P less than 0.01) over baseline values after administration of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. Significant difference was not found in the mean post-TSH serum T4 or T3 concentration after injection of freshly reconstituted TSH or TSH that had been previously frozen for 1, 2, or 3 months. In 2 of the 7 dogs, mild reactions--mild ataxia and weakness--were observed during the last of the series of TSH response tests (ie, after IV administration of TSH that had been previously frozen for 3 months). Results of this study suggest that for use in dogs, reconstituted TSH stored at -20 C maintains adequate biological activity for at least 3 months. The ability to store reconstituted TSH for a longer period than the recommended 48 hours represents an economic advantage, because it allows clinicians to perform more TSH response tests per vial of TSH.  相似文献   

2.
Thyroid function was evaluated in 18 healthy dogs by thyrotropin (TSH) stimulation. Two dose regimens were used in each dog: 0.1 IU/kg body weight of freshly reconstituted lyophilized TSH and 1 IU/dog of previously frozen and stored TSH (up to 200 days), both given intravenously. Blood samples were collected prior to and at four and six hours after TSH administration. Serum was evaluated for total thyroxine concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 0.1 IU/kg body weight of freshly reconstituted TSH at four and six hours. The 1 IU dose of TSH, previously frozen for up to 200 days, induced increases in serum total thyroxine concentration over baseline at four and six hours that were not significantly different from those resulting from the use of the higher dose of fresh TSH. In all test groups, there were no statistically significant differences between total thyroxine concentrations at four and six hours post-TSH administration. It was concluded that an adequate TSH response can be achieved with the use of 1 IU of TSH/dog for clinically normal dogs between 29.0 kg and 41.6 kg body weight, even if this TSH has been frozen at -20 degrees C for up to 200 days. Further, blood collection can be performed at any time between four and six hours. Similar studies are needed to evaluate this new protocol in hypothyroid dogs and euthyroid dogs suffering nonthyroidal systemic diseases.  相似文献   

3.
Serum concentrations of thyrotropin (TSH), prolactin, thyroxine, and 3,5,3'-triiodothyronine in 15 euthyroid dogs and 5 thyroidectomized and propylthiouracil-treated dogs after thyrotropin-releasing hormone (TRH) administration were measured. Although thyroidectomized and propylthiouracil-treated dogs had higher (P less than 0.01) base-line concentrations of TSH in serum than did euthyroid dogs, concentrations of TSH after TRH administration varied at 7.5, 15, and 30 minutes with 14 of 45 samples obtained from healthy dogs having lower TSH concentrations than before TRH challenge. Similarly, concentrations of 3,5,3'-triiodothyronine in the serum of euthyroid dogs 4 hours after TRH administration were similar (P less than 0.05) to concentrations before TRH challenge. Although the mean concentration of thyroxine in serum was elevated (P less than 0.05) 4 hours after administration of TRH to euthyroid animals, as compared with base-line levels, the individual response was variable with concentrations not changing or decreasing in 4 dogs. Therefore, the TRH challenge test as performed in the current investigation was of limited value in evaluating canine pituitary gland function. Although mean concentrations of TSH in serum were higher (P less than 0.05) in euthyroid dogs after TRH administration, the response was too variable among individual animals for accurate evaluation of pituitary gland function. Concentrations of prolactin in the sera of dogs after TRH administration, confirmed previous reports that exogenously administered TRH results in prolactin release from the canine pituitary and indicated that the TRH used was biologically potent.  相似文献   

4.
The stability of reconstituted, refrigerated thyrotropin was evaluated. Thyrotropin (TSH) was reconstituted at the start of the study and stored at 4 degrees C. A TSH stimulation test was performed in eight healthy, euthyroid dogs at weekly intervals for 1 month. In seven of eight dogs, there was no significant difference (P less than 0.05) between the post-TSH T3 concentrations and the post-TSH T4 concentrations for the duration of the study. For one dog, the post-TSH T4 concentration was below the normal post-TSH T4 range following the administration of reconstituted TSH that had been stored 4 weeks. The T3 response to the TSH, however, was normal. This dog responded normally to freshly reconstituted TSH. The results of this study suggest that reconstituted bovine TSH can be stored at 4 degrees C for at least 3 weeks without loss of biologic activity in the dog.  相似文献   

5.
Bovine thyrotropin (bTSH) stimulation testing has long been considered the gold standard for diagnosis of canine hypothyroidism. Unfortunately, bTSH is no longer commercially available. Recently, the use of recombinant human thyrotropin (rhTSH) to perform thyroid-stimulating hormone (TSH) stimulation testing in dogs was described. The cost of an rhTSH vial (1.1 mg) limits the practical use of this product. The study reported here was performed to determine the effects of storing rhTSH on the post-TSH increase of serum total (TT4) and free (FT4) thyroxine concentrations during TSH stimulation testing in 12 euthyroid Beagles in a crossover trial. Three TSH tests with recombinant human thyrotropin (rhTSH; 91.5 microg IV) were performed on each dog during 3 different periods: 1 with freshly reconstituted rhTSH (fresh); 1 with rhTSH, reconstituted and stored at 4 degrees C for 4 weeks (refrigerated); and 1 with rhTSH, reconstituted and frozen at -20 degrees C for 8 weeks (frozen). Blood samples for determination of TT4 and FT4 concentrations were collected before and 4 and 6 hours after rhTSH administration. There was no significant difference in TT4 or FT4 concentration after stimulation with fresh, refrigerated, and frozen rhTSH. Furthermore, there was no significant difference between TT4 or FT4 serum concentration observed 4 and 6 hours after rhTSH administration. In conclusion, reconstituted rhTSH can be stored at 4 degrees C for 4 weeks and at -20 degrees C for 8 weeks without loss of biological activity, allowing clinicians to perform more TSH response tests per vial.  相似文献   

6.
OBJECTIVE: To determine how rapidly trimethoprim-sulfamethoxazole affects serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in euthyroid dogs and how quickly hormone concentrations return to reference values following discontinuation of administration. DESIGN: Prospective study. ANIMALS: 7 healthy euthyroid dogs. PROCEDURE: Dogs were given trimethoprim-sulfamethoxazole (26.5 to 31.3 mg/kg [12 to 14.2 mg/lb], PO, q 12 h) for a maximum of 6 weeks. A CBC and Schirmer tear test were performed and serum total T4 and TSH concentrations were measured weekly. Administration of trimethoprim-sulfamethoxazole was discontinued if total T4 concentration was less than the lower reference limit and TSH concentration was greater than the upper reference limit or if persistent neutropenia developed. RESULTS: Six dogs had total T4 concentrations less than the lower reference limit within 3 weeks; T4 concentration was decreased after 1 week in 3 of these 6 dogs. In these 6 dogs, TSH concentration was greater than the upper reference limit within 4 weeks. In 1 dog, T4 and TSH concentrations were not affected, despite administration of trimethoprim-sulfamethoxazole for 6 weeks. Neutropenia developed in 4 dogs. In 1 dog, the neutropenia resolved while trimethoprim-sulfamethoxazole was still being administered. In the other 3, neutrophil counts returned to reference values 1 week after drug administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of trimethoprim-sulfamethoxazole at a dosage of 26.5 to 31.3 mg/kg, PO, every 12 hours can substantially alter serum total T4 and TSH concentrations and neutrophil counts in dogs within as short a time as a few weeks.  相似文献   

7.
Thyroid function tests in euthyroid dogs treated with L-thyroxine   总被引:1,自引:0,他引:1  
The effects of treatment with L-thyroxine (1 mg/m2 of body surface/d, PO, for 8 weeks) on the thyroxine (T4) and triiodothyronine (T3) responses to thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) administration were determined in 10 euthyroid Beagles; 4 other dogs acted as controls. The TSH response test was performed before treatment and at weeks 2, 4, and 8 of treatment in all dogs and at 2 and 4 weeks after cessation of treatment in 6 dogs. The TRH response test was performed before treatment and at week 6 of treatment in all dogs and at 5 weeks after cessation of treatment in 6 dogs. Suppression of the T3 response to TSH was evident at treatment week 2, whereas the T4 response was suppressed at week 4 and remained suppressed for the duration of the study. Four weeks after stopping treatment, T4 and T3 responses to TSH in 2 dogs were within the hypothyroid range. The T4 response to TRH was completely suppressed after 6 weeks of thyroxine treatment, but returned to pretreatment values by 5 weeks after cessation of treatment. Suppression of thyroid and pituitary function is evident after administration of a replacement dose of L-thyroxine to euthyroid dogs.  相似文献   

8.
Thyroid function was evaluated in 20 healthy dogs by thyrotropin (TSH) response testing. Two dose regimens were used: 5 IU of TSH given IV and 1 IU of TSH given IV. Blood samples were collected prior to and at 4 and 6 hours after TSH administration. Serum was obtained and analyzed for total 3,5,3'-tri-iodothyronine and thyroxine (T4) concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 5 IU of TSH at 4 and 6 hours. The 1-IU dose of TSH failed to induce adequate increase in T4 concentration in 7 dogs at 4 and 6 hours when the criteria for normal response were post-TSH serum concentration T4 greater than or equal to 3.0 micrograms/dl and serum T4 increase by greater than or equal to 100% over baseline serum T4 concentration. One IU of TSH induced increase in serum T4 concentration over baseline; however, the increase was significantly (P less than 0.05) less than that in response to a 5-IU dose at 6 hours after administration of TSH.  相似文献   

9.
Serum triiodothyronine (T3) and thyroxine (T4) concentrations were determined after IV administration of 200 micrograms of thyrotropin-releasing hormone (TRH) to 10 healthy euthyroid dogs. Significant (P less than 0.05) changes were not found in the T3 concentration throughout an 8-hour sampling interval. All dogs had a significant increase (P less than 0.05) in the T4 concentration at 4, 5, 6, 7, and 8 hours after TRH administration. The largest increase in the serum T4 concentration occurred 4 hours after TRH injection. From 4 to 8 hours after TRH administration, the mean increase above basal T4 concentrations was 13.9 +/- 5.4 ng/ml.  相似文献   

10.
Response to thyrotropin (TSH) was evaluated in 2 groups of mixed-breed dogs. Thyrotropin (5 IU) was administered IV to dogs in group 1 (n = 15) and IM to dogs in group 2 (n = 15). Venous blood samples were collected immediately before administration of TSH and at 2-hour intervals for 12 hours thereafter. In group 1, the maximum mean concentration (+/- SD) of thyroxine (T4; 7.76 +/- 2.60 micrograms/dl) and 3,5,3'-triiodothyroxine (T3; 1.56 +/- 0.51 ng/ml) was attained at postinjection hours (PIH) 8 and 6, respectively. However, the mean concentration of T4 at PIH 6 (7.21 +/- 2.39 micrograms/dl) was not different (P greater than 0.05) from the mean concentration at PIH 8. The maximum mean concentration of T4 (10.10 +/- 3.50 micrograms/dl) and T3 (2.22 +/- 1.24 ng/ml) in group 2 was attained at PIH 12 and 10, respectively. Because dogs given TSH by the IM route manifested pain during injection, had variable serum concentrations of T3 after TSH administration, and may require 5 IU to achieve maximal increases in serum T4 concentrations, IV administration of TSH is recommended. The optimal sampling time to observe maximal increases in T3 and T4 after IV administration of TSH was 6 hours. Repeat IV administration of TSH may cause anaphylaxis and, therefore, is not recommended.  相似文献   

11.
OBJECTIVE: To evaluate thyroid function in healthy Greyhounds, compared with healthy non-Greyhound pet dogs, and to establish appropriate reference range values for Greyhounds. ANIMALS: 98 clinically normal Greyhounds and 19 clinically normal non-Greyhounds. PROCEDURES: Greyhounds were in 2 groups as follows: those receiving testosterone for estrus suppression (T-group Greyhounds) and those not receiving estrus suppressive medication (NT-group Greyhounds). Serum thyroxine (T4) and free thyroxine (fT4) concentrations were determined before and after administration of thyroid-stimulating hormone (TSH) and thyroid-releasing hormone (TRH). Basal serum canine thyroid stimulating hormone (cTSH) concentrations were determined on available stored sera. RESULTS: Basal serum T4 and fT4 concentrations were significantly lower in Greyhounds than in non-Greyhounds. Serum T4 concentrations after TSH and TRH administration were significantly lower in Greyhounds than in non-Greyhounds. Serum fT4 concentrations after TSH and TRH administration were significantly lower in NT-group than T-group Greyhounds and non-Greyhounds. Mean cTSH concentrations were not different between Greyhounds and non-Greyhounds. CONCLUSIONS AND CLINICAL RELEVANCE: Previously established canine reference range values for basal serum T4 and fT4 may not be appropriate for use in Greyhounds. Greyhound-specific reference range values for basal serum T4 and fT4 concentrations should be applied when evaluating thyroid function in Greyhounds. Basal cTSH concentrations in Greyhounds are similar to non-Greyhound pet dogs.  相似文献   

12.
The response of thyroid stimulating hormone (TSH) and prolactin (PRL) concentrations to administration of thyrotropin releasing hormone (TRH) was determined in light-horse mares during the anestrous season (winter) and during estrus (standing heat) in the summer. Within each season, mares (4/group) were treated with either saline (controls) or one of four doses of TRH (80, 400, 2,000 or 10,000 ug) intravenously. Samples of blood were drawn at −15, −.5, 15, 30, 45, 60, 90, 120, 180 and 240 min relative to TRH injection. Concentrations of TSH and PRL in pre-TRH samples were greater (P<.05) in anestrous mares during winter than in estrous mares during summer. Concentrations of TSH increased (P<.05) within 30 min after administration of TRH and remained elevated during the 4-hr sampling period. The maximal net change in TSH concentrations and the area under the response curve were greatest for 2,000 ug of TRH; 80 ug did not produce a significant TSH response. There was no interaction (P >.10) between reproductive state and TRH dose for TSH concentrations. Concentrations of PRL were not significantly affected by any TRH dose during either season. It appears that mares differ from many mammalian species in that they do not respond to an injection of TRH with increases in both TSH and PRL.  相似文献   

13.
Recombinant human thyroid-stimulating hormone (rhTSH) was evaluated for the diagnosis of canine hypothyroidism, using TSH response tests. Phase I stimulation tests were performed in 6 healthy dogs weighing over 20 kg, using 50 and then 100 microg of freshly reconstituted rhTSH administered intravenously. In phase II, the same dogs were stimulated by using 100 microg of rhTSH frozen for 3 months at -20 degrees C. Phase III stimulation tests were performed by using 50 or 100 microg of freshly reconstituted or frozen rhTSH in healthy (n = 14), euthyroid sick (n = 11) and hypothyroid dogs (n = 9). A dose of 100 microg of rhTSH was judged more appropriate for dogs weighing more than 20 kg. Biological activity of rhTSH after freezing at -20 degrees C for up to 12 weeks was maintained. When stimulated, significant (P < 0.05) increases in total thyroxine concentration were observed only in healthy and euthyroid sick dogs. Results of this study show that the rhTSH stimulation test is able to differentiate euthyroidism from hypothyroidism in dogs.  相似文献   

14.
Changes in total thyroxine (T4), free T4 and total tri-iodothyronine (T3) were measured in 13 cats after the intravenous injection of varying doses of thyrotrophin stimulating hormone (TSH) (0–5 U/cat n = 6; 1 U/cat n = 8; 1 U/kg bodyweight, n = 7) or thyrotrophin releasing hormone (TRH) (100 ug/cat, n = 10). All three doses of TSH resulted in a significant (P < 0–05) rise in T4, free T4 and T3 levels, with the mean peak in hormone concentrations occurring six to eight hours after injection. The three doses of TSH all appeared to produce maximal stimulation of thyroid hormone secretion. The mean percentage increase in hormone concentrations at seven hours following the three doses of TSH ranged from 167 to 198 per cent for T4, 240 to 365 per cent for free T4, and 73 to 116 per cent for T3. Following administration of TRH there was also a significant (P < 0–05) rise in T4, and free T4. The mean peak in T4 and free T4 levels occurred at four hours, and mean increases in hormone levels at this time were 92 per cent for T4, and 198 per cent for free T4. The administration of TRH produced little change in T3 levels. TSH administration resulted in a significantly higher (P < 0–05) percentage peak increase in T4, free T4 and T3 levels at all three dosages than did TRH.  相似文献   

15.
OBJECTIVE: To determine the effects of racing and nontraining on plasma thyroxine (T4), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and thyroglobulin autoantibody (TgAA) concentrations in sled dogs and compare results with reference ranges established for dogs of other breeds. DESIGN: Cross-sectional study. ANIMALS: 122 sled dogs. PROCEDURE: Plasma thyroid hormone concentrations were measured before dogs began and after they finished or were removed from the Iditarod Trail Sled Dog Race in Alaska and approximately 3 months after the race. RESULTS: Concentrations of T4 and fT4 before the race were less than the reference range for nonsled dogs in 26% and 18% of sled dogs, respectively. Immediately after racing, 92% of sled dogs had plasma T4 concentrations less than the reference range. Three months after the race, 25% of sled dogs had plasma T4 concentrations less than the reference range. For T4, fT4, TSH, and TgAA, significant differences were not detected in samples collected before the race versus 3 months later. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma T4, fT4, and TSH concentrations decreased in dogs that complete a long distance sled dog race. Many clinically normal sled dogs have plasma T4 and fT4 values that are lower than the reference range for nonsled dogs. We suggest that the reference ranges for sled dogs are 5.3 to 40.3 nmol/L and 3.0 to 24.0 pmol/L for plasmaT4 and fT4 concentrations, respectively, and 8.0 to 370 mU/L for TSH.  相似文献   

16.
Changes in total thyroxine (T4 [TT4]), free T4(FT4) and total tri-iodothyronine (T3 [TT3]) in serum after the intravenous administration of different doses of thyrotropin (TSH) and thy-rotropin-releasing hormone (TRH) were measured in six healthy beagles. Significant (P<0·05) elevations in serum TT4, FT4 and TT3 were observed at each sampling time (two, four, five, six, seven, eight and 10 hours) after administration of 1, 3 or 5 iu (total dose) TSH and peak mean responses were observed six to eight hours after injection. At six hours after injection the mean TT4, FT4 and TT3 levels were approximately 2·6, 3·9 and 1·5 times basal levels, respectively, and there were no significant differences between the three doses of TSH. Significant (P<0·05) elevations in serum TT4 and FT4 but not TT3 were observed at each sampling time (two, four, five, six, seven and eight hours) after the administration of TRH. Peak mean responses were observed at four hours after injection at which time TT4 and FT4 levels were approximately 1·7 and 1·9 times basal levels, respectively. No significant differences were observed between the four doses of TRH used (100, 200, 300 and 600 μg total dose). Concentrations of TT4, FT4 and TT3 were significantly (P<0·05) higher following the administration of TSH compared with TRH, and the response to TRH showed greater individual variation.  相似文献   

17.
A similar and significant (P less than 0.001) increase in plasma thyroxine (T4) concentration was seen in seven clinically normal thoroughbred horses 2 h after the intravenous administration of either 2.5 iu or 5 iu of thyroid stimulating hormone (TSH) with a peak response around 4 h after administration. The intravenous administration of 0.2, 0.5 or 1 mg thyrotrophin releasing hormone (TRH) resulted in a significant (P less than 0.01) increase in T4 concentration in three groups of animals; six thoroughbreds in full work, five thoroughbreds at rest and four ponies at rest. The peak response was recorded at 3 or 4 h after administration. A significant difference between the groups in the degree of response to TRH was only found between the thoroughbreds in work and those at rest with 1 mg TRH (P less than 0.05). When two additional ponies were investigated in a similar way, a reduced response to TRH was observed: a pregnant mare had a similar response to 5 iu TSH as the thoroughbreds; the other pony also showed a lowered response to TSH. In a group of 2- or 3-year-old thoroughbreds in training no difference in the T4 response 4 h after intravenous administration of 0.5 mg TRH could be determined, according to the month, age, sex or work intensity. Although resting T4 concentrations did not differ significantly between animals believed to be suffering from the equine rhabdomyolysis syndrome (ERS) and those suffering from a variety of other conditions, some ERS sufferers may have a lowered response to TRH.  相似文献   

18.
Thyrotropin (thyroid stimulating hormone; TSH) stimulus to thyroid cells of horses and dogs resulted in increased serum triiodothyronine (T3) concentrations that were detected earlier than those of thyroxine (T4). Doubling of the base-line T3 values in horses was detected 0.5 hours after injection of 5 IU of TSH IV, with peak response of 5 times base-line value detected 2 hours after injection. Doubling of T4 values in horses was noticed between 2 and 3 hours, with the peak response of 2.4 times base-line value at 4 hours after injection of TSH. Doubling of base-line T3 values in dogs in response to 0.2 IU TSH/kg of body weight (IV-5 IU maximum dose) was noticed at 1 hour, whereas T4 response doubled between 1.5 and 2 hours. Peak release of T3 and T4 in response to TSH in dogs had not developed by 4 hours; however, the percentage increase over base-line values was greater for T3 than T4 at early sampling time points, and this response has resulted in an increased T3/T4 ratio in hypothyroid dogs. Thus, in both dogs and horses, these studies indicated that T3 response to TSH could be used as a measure of thyroid function at earlier time intervals after TSH administration than one measures T4 response.  相似文献   

19.
OBJECTIVE: To evaluate whether use of recombinant human (rh) thyroid-stimulating hormone (TSH) induces equivalent stimulation, compared with bovine TSH (bTSH), and to evaluate activity of rhTSH in dogs of various large breeds. ANIMALS: 18 healthy research Beagles and 20 healthy client-owned dogs of various breeds with body weight > 20 kg. PROCEDURES: The 18 Beagles were randomly assigned to 3 groups, and each dog received either 75 microg of rhTSH, IM or IV, or 1 unit of bTSH, IM, respectively, in a crossover design. The 20 client-owned dogs received 75 microg of rhTSH, IV. Blood samples were taken before and 6 hours after TSH administration for determination of total serum thyroxine (T(4)) concentration. Additional blood samples were taken after 2 and 4 hours in Beagles that received rhTSH, IM. RESULTS: There was a significant increase in T(4) concentration in all dogs, but there were no differences between values obtained after administration of bTSH versus rhTSH or IV versus IM administration of rhTSH. Although there was a significant difference in age and body weight between Beagles and non-Beagles, there was no difference in post-TSH simulation T(4) concentration between the 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated an equivalent biological activity of rhTSH, compared with bTSH. Use of 75 microg of rhTSH, IV, did not induce a different magnitude of stimulation in large-breed dogs, compared with Beagles. Euthyroidism was confirmed if post-TSH simulation T(4) concentration was > or = 2.5 microg/dL and at least 1.5 times basal T(4) concentration.  相似文献   

20.
Effects of thyrotropin-releasing hormone (TRH) on serum concentrations of thyroid hormones were studied in 36 mixed-bred dogs. Dogs were randomly assigned to 7 groups. Significant increases (P less than 0.05) of serum thyroxine (T4) values occurred as early as 2 hours and reached a peak at 6 to 8 hours after IV injection of 300 to 1,100 micrograms of TRH. Thyroxine concentrations in response to a TRH dose greater than 500 micrograms were similar to those observed with the 300-micrograms dose. Transient coughing, vomiting, salivation, and defecation after large doses (900 and 1,100 micrograms) were observed. Mean serum T4 concentration decreased from 2.1 micrograms/dl to 0.9 micrograms/dl within 1 day of thyroidectomy. Clinical signs of hypothyroidism, including lethargy, dry coats, and diffuse alopecia, were present in 2 dogs at a month after surgical operation. Thyroxine concentrations were detectable for greater than 2 months. Injection (IV) of 700 micrograms of TRH 6 weeks after surgical operation had no effect on serum concentration of T4 in thyroidectomized dogs. In 5 T4-treated dogs, TRH (700 micrograms, IV) significantly increased the serum T4 value, indicating that pituitary thyrotropes were responsive to TRH, in spite of daily medication of 0.8 mg of T4. Four dogs were treated orally with 200 mg of propylthiouracil/day for 5 weeks. Intravenous injection of 700 micrograms of TRH in propylthiouracil-treated dogs had no effect on the serum T4 concentration, indicating that TRH had no effect on serum T4 values in these dogs during the experimental period. These results indicate that TRH can replace bovine thyrotropin for the canine thyroid function test.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号