首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon mineralization and microbial biomass content of wheat straw (WS), pig slurry (PS) and their mixture (WSPS), either intact or with extraction of soluble substances (–SS) or soluble substances plus hemicellulose (–SSH), added to soil, were monitored over 230 days in a laboratory incubation experiment. The WSPS showed a CO2 release of up to 23% above that predicted by summing the CO2 evolved from WS and PS. Of the several kinetic models tested to describe the mineralization process, a double exponential model best described the C mineralization of all the materials, both intact and with extractions. The extraction of the labile substances from WS, PS and WSPS lowered the values of the rapidly mineralizable C and of the amount of microbial biomass. The organic fraction of WS was found to be almost completely represented by mineralizable carbon, while PS and WSPS showed only 62% of mineralizable carbon. In spite of this, after 8 months, about half of the initial amount of the organic C in the intact residues still remained unmineralized. Received: 29 October 1996  相似文献   

2.
Carbon (C) and Nitrogen dynamics and sources of nitrous oxide (N2O) production were investigated in a loamy soil amended with pig slurry. Pig slurry (40000kgha–1) or distilled H2O was applied to intact soil cores of the upper 5cm of a loamy soil which were incubated under aerobic conditions for 28 days at 25°C. Treatments were with or without acetylene (C2H2), which is assumed to inhibit the reduction of N2O to dinitrogen (N2), and with or without dicyandiamide (DCD), which is thought to inhibit nitrification. Volatilization of ammonia (NH3), pH, carbon dioxide (CO2) and N2O production, and ammonium (NH4 +) and nitrate NO3 ) concentrations were monitored. The pH of the pig slurry amended soil increased from an initial value of 7.1 to pH 8.3 within 3 days; it then decreased slowly but was still at a value of 7.4 after 28 days. Twenty percent of the NH4 + applied volatilized within 28 days. Sixty percent of the C applied in the pig slurry evolved as CO2, if no priming effect was assumed, but only 38% evolved when the soil was amended with DCD. Pig slurry significantly increased denitrification and the ratio between its gaseous products, N2O and N2, was 0.21. No significant increases in NO3 concentration occurred, and N2O produced through nitrification was 0.07mg N2O-N kg–1 day–1 or 33% of the total N2O produced. C2H2 was used as a C substrate by microorganisms and increased the production of N2O. Received: 12 May 1997  相似文献   

3.
采用15N示踪技术,选用水稻土和灰潮土在宜兴进行小麦盆栽试验,研究了稻草、猪粪及其堆肥与化肥配施对作物生长及氮素吸收的影响。结果表明,在水稻土和灰潮土上,不同有机物及其堆肥与化肥配施分别比单施化肥增产4.46%~24.82%和1.01%~20.53%,稻草堆肥和猪粪堆肥配施化肥处理籽粒产量分别高于稻草和猪粪直接与化肥配施处理。稻草和猪粪堆肥后更利于作物吸收氮素,增加植物体内15N累积。两种土壤上15N回收率表现为相同配比的堆肥处理未堆肥处理单施化肥处理。随着小麦生育期的推进,土壤微生物量氮和矿质态氮含量均呈下降趋势,稻草和猪粪处理的微生量氮含量始终高于稻草堆肥和猪粪堆肥处理。有机无机肥配施处理土壤矿质态氮在小麦生育前期低于单施化肥,成熟期则高于单施化肥。整个生育期中,稻草堆肥和猪粪堆肥处理土壤矿质态氮含量分别高于稻草和猪粪处理。因此,有机物堆肥后与化肥配施更有利于提高产量,促进作物对氮素的吸收利用。  相似文献   

4.
The application of paddy straw to soil improved the yield of soybeans significantly in a light-textured red sandy loam soil with a pH of 5.6. Whereas the nodulation was unaffected in the crop grown under rainfed conditions it was improved in the irrigated summer crop of soybeans. Grain yield was significantly increased in treatment receiving straw at 3 t/ha. Addition of dung slurry as a source of inoculum for straw decomposition or a second inoculation of plants with Rhizobium failed to affect nodulation and yield of soybeans.  相似文献   

5.
秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响   总被引:4,自引:4,他引:4  
【目的】陕西关中平原是我国典型的冬小麦—夏玉米轮作区,冬小麦播种前将上季收获后的玉米秸秆还田是当地普遍采用的作物秸秆管理方式。本研究以优化秸秆还田条件的小麦养分资源管理,实现作物增产和肥料增效为目标,通过2年的田间定位试验,探索关中地区玉米秸秆还田条件下,冬小麦高产高效的最佳养分管理措施。【方法】试验于2011年10月至2013年5月在陕西省周至县终南镇进行,供试冬小麦品种为周麦23,夏玉米品种为郑单958。采用裂区设计,主处理为玉米秸秆全量还田(S1)和秸秆不还田(S0),副处理为5个不同氮肥施用水平(N 0、84、168、252和336 kg/hm2),种植作物为冬小麦。通过不同氮水平的回归分析,研究了玉米秸秆还田对后茬冬小麦的籽粒产量、生物量和收获期地上部氮、磷、钾养分吸收利用的影响。【结果】与玉米秸秆不还田相比,秸秆还田对冬小麦籽粒产量和收获期地上部氮、磷、钾养分吸收量的影响均表现出低氮降低、高氮增加的趋势。第一年和第二年在施氮量分别低于N 153和187 kg/hm2时,秸秆还田处理小麦减产,相反则增产,并且增产量随着氮肥用量的增加而增大;生物量与产量趋势一致,前后两年玉米秸秆还田与不还田条件下,冬小麦生物量相等时的氮肥用量分别为N 190和202 kg/hm2。在产量构成要素中,同一氮水平时,秸秆还田对小麦穗粒数和千粒重没有明显影响,而每公顷穗数却表现为低氮降低、高氮增加的趋势,所以秸秆还田后穗数增加是小麦增产的主要原因。同时,在玉米秸秆还田条件下,小麦地上部氮、磷、钾吸收量增加时,第一年的氮肥用量分别高于N 275、123和213kg/hm2,第二年分别高于N 200、165和241 kg/hm2,但氮、磷、钾的收获指数不随施氮量的增加而递增。而且过量施氮也会造成小麦籽粒磷含量的降低。【结论】在综合同一施氮水平时,秸秆还田后的冬小麦籽粒产量和地上部氮、磷、钾养分吸收利用的变化,建议在陕西关中平原的冬小麦—夏玉米轮作区域,氮肥用量应控制在N 150~200kg/hm2,以保证在玉米秸秆还田条件下小麦的增产和氮、磷、钾养分资源的高效合理利用。  相似文献   

6.
氮肥用量和水分淋溶对土壤和小麦氮素平衡的影响   总被引:3,自引:0,他引:3  
:利用标记15N尿素研究不同施肥量和淋溶对小麦生长的影响 ,结果表明水分淋溶对小麦生长的影响不明显 ;地上部生物产量与肥料利用率成正相关 .小麦根系越发达 ,收集到的淋溶液越少 ,损失的肥料N越少 .施用相同量的氮肥 ,淋溶处理的氮肥利用率略低于正常浇水的处理  相似文献   

7.
长期稻秆还田对土壤微生物量及C、N动力学的影响   总被引:5,自引:0,他引:5  
A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils, the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g•d)-1) decreased rapidly in the first two weeks' incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in Treatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.  相似文献   

8.
The effect of three annually consecutive additions of pig slurry at two rates (90 and 150 m3 x ha(-1) x year(-1) on soils and soil humic acids (HAs) was investigated in a field experiment under semiarid conditions. Soils and pig slurries were analyzed by standard methods. The HAs were isolated from soils and pig slurry by a conventional procedure based on alkaline extraction, acidic precipitation to pH 1, purification by repeated alkaline dissolutions and acidic precipitations, water washing, dialysis, and final freeze-drying. The HAs obtained were analyzed for elemental (C, H, N, S, and O) and acidic functional group (carboxylic and phenolic) composition, and by UV-vis, FT-IR, fluorescence, and ESR spectroscopies. With respect to the control soil, the pig slurry amended soils had greater pH and electrical conductivity, slightly larger total N content, and smaller values of C/N ratio. A decrease of total organic C was observed only in soils amended for 2 and 3 years at the higher slurry rate. With respect to control soil HA, pig slurry HA was characterized by larger contents of S- and N-containing groups, smaller acidic functional group and organic free radical contents, a prevalent aliphatic character, extended molecular heterogeneity, and smaller aromatic polycondensation and humification degrees. Amendment with pig slurry HA determines a number of modifications in soil HAs, including increase of C, S, and COOH contents, C/N ratios, and aliphaticity and decrease of extraction yields and N, O, phenolic OH, and organic free radical contents. These effects are generally more evident after the first year of slurry application and tend to disappear with increasing number of treatments. Most probably, over the years the slightly humified slurry HA is mineralized through extended microbial oxidation, whereas only the most recalcitrant components, such as S-containing, phenolic, and aliphatic structures, are partially accumulated by incorporation into soil HA.  相似文献   

9.
以中等肥力土垫旱耕人为土为供试土壤,在冬小麦(Triticum aestivum)不同生育期采集0-100 cm土层土壤样品,研究不同施肥及杂草处理对半湿润农田生态系统土壤NO3--N动态变化的影响。结果表明,1)土壤剖面NO3--N含量随施氮量增加而显著增加,0-100 cm土层NO3--N累积量与施氮量线性相关;在越冬期、返青期和拔节期,相关系数r分别为0.995、0.971和0.949。2)冬小麦生长过程中,土体NO3--N含量先降低后回升,在拔节期最低;成熟期土壤有机氮矿化产生的NO3--N是收获后土壤剖面残留NO3--N的主要贡献者。3)在越冬期、返青期、拔节期和成熟期,施磷(PN135)与不施磷(P0N135)处理相比,施磷可显著减少土体NO3--N累积量,减少量分别为N 61.4、26.9、36.6和5.5 kg/hm2;磷肥对减少土壤NO3--N残留累积量的影响以越冬期表现最为显著,成熟期表现不显著。4)在施磷的基础上,不同杂草处理土壤剖面NO3--N累积量在每公顷施氮45 kg(PN45)及施氮90 kg (PN90)时存在一定差异,但不显著;而在每公顷施氮180 kg(即PN180)的高氮处理下,差异显著。每公顷施氮135 kg(PN135),的中氮处理,在越冬期清除杂草后土壤剖面中NO3--N累积量在拔节期显著高于其它杂草处理。  相似文献   

10.
To assess the effect of rice straw mulching on changes of antagonistic bacteria and the incidence of wheat sharp eyespot, a multi-year field study was performed to compare unmulched plots and the plots mulched with rice straw for two or three years. Bacterial and fungal populations were evaluated in the cultures prepared from the wheat rhizosphere and bulk soils. Rice straw mulching increased the number of pseudomonas colony forming units in wheat rhizosphere and bulk soils. The proportion of total bacteria that were fluorescent pseudomonads was higher in mulched than in unmulched soil. Bacterial isolates antagonistic to Rhizoctonia cerealis were identified using an inhibition zone test. A series of these isolates were typed by partial sequencing of the 16S rRNA gene. Pseudomonads had higher antagonistic activity against R. cerealis than other species, and more than 80% of rhizosphere fluorescent pseudomonads were antagonistic to R. cerealis. The disease indices were lower in the mulched plots than in the unmulched control. These results suggest that rice straw mulching in a rice-wheat rotation increases the number of fluorescent pseudomonads. Additionally, these fluorescent pseudomonads may contribute to the control of wheat sharp eyespot.  相似文献   

11.
Summary A laboratory study was performed to determine decomposition of fatty acids and mineralization of C and N from slurries in soil. Fatty acids present in slurries decomposed within 1–2 days at 25°C in soil. Parallel to the fatty acid decomposition, immobilization of N was measured in soil. The correlation between the initial fatty acid concentrations in the slurries and the amounts of N immobilized were found to be highly significant (R 2=0.97). It was concluded that fatty acids act as an easily decomposable C source for microorganisms and cause immobilization of N. Immobilization of N was followed by a curvilinear mineralization of N in all slurrytreated soils. Despite mineralization, only fresh pig slurry and anaerobically digested pig slurry showed a net release of N over 70 days whereas cattle slurry and anaerobically fermented pig slurry did not. The percentage of slurry C evolved during 70 days was fresh pig slurry, 65%; anaerobically fermented pig slurry, 48%; anaerobically digested pig slurry, 45%; and anaerobically fermented cattle slurry, 42%.  相似文献   

12.
Summary Winter wheat grown on a clay soil was subjected to one of four treatments. The control was not irrigated; the drought treatment had screens to divert rainwater; the irrigation and irrigation/fertilization treatments were irrigated using a drip-tube system with liquid fertilizer (200 kg N ha-1 year-1) applied daily in the irrigation/fertilization treatment according to predicted plant uptake. All other treatments also received 200 kg N, but as a single application of bag fertilizer. Soil temperature was monitored. Soil moisture was measured using gravimetric samplings and a capacitance method. Litter bags with barley straw were buried at 10 cm depth in the spring and sampled repeatedly during the growing season. Decomposition rates were calculated assuming exponential decay and that water-soluble components were immediately decomposed or leached from the litter bags. Rates were highly dependent on soil moisture, and the constants ranged from 0.11% day-1 in the drought treatment to 0.55% day-1 in the irrigation/fertilization treatment. A simulation model with driving variables based on Q 10 temperature dependence and a log/linear relationship between soil water tension and activity was fitted to the data. The control and drought treatments showed high climate-corrected decomposition constants. The high values were attributed to low and erratic mass loss due to drought, and to low precision in the conversions from water content to tension in the dry range. The irrigated treatments showed good fits, and there was little or no difference in decomposition rates between the two irrigated treatments. The N dynamics of the straw differed considerably between treatments, and the ranking of plots in terms of net immobilization in the straw was control>irrigation/fertilization>irrigation>drought.  相似文献   

13.
【目的】以秸秆还田定位试验为平台,探讨玉米秸秆还田配施氮肥对冬小麦产量、土壤硝态氮积累、氮素表观盈余和氮肥利用率的影响规律,明确砂姜黑土玉米秸秆全量还田条件下冬小麦生长季的最佳施氮量。【方法】试验以秸秆处理为主区,设秸秆还田和秸秆移除2个水平;施氮量为副区,设6个水平,分别为0、162.0、202.5、243.0、283.5、324.0 kg/hm2。测定了冬小麦播种前、拔节期、成熟期地上部植株含氮量,土壤0—20、20—40和40—60 cm硝态氮含量,小麦产量以及籽粒氮含量,计算了冬小麦生育期土壤的氮素表观盈余,小麦基施和追施氮肥的利用效率以及不同阶段的氮素盈余。【结果】玉米秸秆还田后小麦增产365 844 kg/hm2,增产率为4.2%9.3%,尤其以配施243.0 kg/hm2的增幅最高,产量达9858 kg/hm2。小麦整个生育期,秸秆还田显著增加了0—60 cm土层的土壤硝态氮累积量,而秸秆移除条件下,土壤硝态氮累积量与氮肥施用量相关,高量氮肥增加了硝态氮累积量,N施用量高于243.0 kg/hm2时,硝态氮累积量较小麦播种前增加19.8%28.6%。施氮均显著增加了植株氮素积累量;小麦播种到拔节期,植株的氮素积累量随基肥比例的增加而增加。小麦生育期不施氮处理表现为氮素亏缺,施氮处理显著增加了0—60 cm土层的土壤氮素盈余量,且随基肥、追肥量的增加而增加,盈余值每增加100.0kg/hm2,秸秆还田配施氮肥和单施氮肥的土壤剖面硝态氮积累量就会分别增加74.2和91.4 kg/hm2。秸秆还田配施氮肥提高了氮肥农学效率、植株地上部氮肥吸收利用率、籽粒氮肥吸收利用率,特别是在高氮肥时,基肥和拔节肥的利用率显著高于单施氮肥。在施氮处理间、相同氮肥施用下秸秆还田和移除处理间氮素收获指数均无显著差异。氮肥表观回收率随施氮量的增加而降低,基肥表观回收率显著高于拔节肥表观回收率。【结论】秸秆还田和施氮水平对小麦植株氮素的吸收转运没有显著影响,但可提高基施和追施氮肥的利用率,可增加土壤0—60 cm土层中硝态氮的含量。综合各项指标,冬小麦生长季玉米秸秆全量还田适宜的氮肥配施量为202.5 243.0 kg/hm2。  相似文献   

14.
Abstract. In areas of intensive pig farming, fresh pig slurry is often applied annually to the same fields. Thus, to avoid nitrogen (N) losses correct fertilizer practice should take account of residual effects of slurry on the following crops. The residual effects of different rates of slurry applied during three years were evaluated in subsequent wheat crops. The experiment was conducted on an irrigated Mediterranean Typic Xerofluvent soil, where plots were left unfertilized or fertilized with 150 kg N ha−1 as ammonium nitrate. Grain yield and grain N uptake increased with slurry rates in both fertilized and unfertilized treatments. The increases in the unfertilized treatments were interpreted as a nitrogen effect of the previous 1996–98 slurry applications. The equivalent mineral N released from the pig slurry was underestimated by two existing decay-series approaches. Although decay-series are useful tools for estimating manure residual effects they should be adjusted for local conditions. A significant positive relationship was detected between apparent N use efficiency of the slurry and the total amount of applied organic N, which was interpreted as a specific residual effect rather than due to the N dose of previously applied pig slurry.  相似文献   

15.
秸秆还田与施氮对冬小麦生长发育及水肥利用率的影响   总被引:19,自引:0,他引:19  
田间试验研究了小麦-玉米一年两熟耕作区玉米秸秆还田与氮肥配施和化肥单施对冬小麦生长发育、籽粒产量及氮肥表观利用率和水分利用效率的影响。结果表明, 施氮量相同时, 秸秆与氮肥配施越冬前和拔节期冬小麦总茎数和单株分蘖数低于化肥单施, 施氮量在75~225 kg·hm-2 时, 植株干重高于化肥单施; 孕穗期到成熟期植株干重、成穗率和产量构成因素秸秆与氮肥配施处理高于化肥单施处理, 籽粒产量增加58.9~339.6kg·hm-2, 水分生产率提高0.026~0.083 kg·m-3。施氮量在75 kg·hm-2 时, 秸秆与氮肥配施的氮肥表观利用率低于化肥单施; 在150~300 kg·hm-2 时高于化肥单施。因此, 针对目前黄淮海麦区小麦-玉米一年两熟种植制度下, 秸秆还田前期生物争氮、后期供肥能力增强的特点, 秸秆连续还田后配施纯氮225 kg·hm-2, 可有效提高灌水和氮肥利用率, 实现冬小麦高产高效栽培。  相似文献   

16.
秸秆还田下氮肥运筹对白土田水稻产量和氮吸收利用的影响   总被引:14,自引:2,他引:14  
【目的】研究小麦秸秆直接还田条件下不同氮肥基追比例运筹方式对白土稻田水稻产量和氮素吸收利用的影响, 为华中低产白土稻田水稻合理施肥提供科学依据。【方法】设置2种小麦秸秆还田量(0和3000 kg/hm2)及3种氮肥基肥-分蘖肥-穗肥施用比例(80-0-20、 60-20-20 和40-30-30)和不施氮的对照, 共7个处理, 分别为N80-0-20、 N60-20-20、 N40-30-30、 N80-0-20+S、 N60-20-20+S、 N40-30-30+S和CK。水稻收获期采集代表性样品考察水稻产量结构性状, 同时测定水稻籽粒和秸秆产量, 分析籽粒和秸秆氮素含量, 计算水稻氮素吸收量和氮肥利用效率。【结果】基肥-分蘖肥-穗肥施用比例60-20-20的处理水稻籽粒产量最高, 两年试验较不施分蘖肥的对照分别增产9.4%~12.9%和7.4%~8.9%。实施小麦秸秆直接还田后, 水稻籽粒产量较不施秸秆的对照分别提高10.2%~23.4%和0.8%~5.5%。不施秸秆条件下, 基-蘖-穗肥施用比例60-20-20的处理水稻籽粒含氮量最高, 较不施氮的对照提高11.3%, 而秸秆含N量随中后期追肥比例的加大而提高。秸秆还田条件下, 氮肥后移能明显提高水稻籽粒和秸秆含氮量。水稻籽粒氮素吸收量, 基-蘖-穗肥比例60-20-20处理最多, 2011年较对照N80-0-20分别增加13.7%和24.8%, 2012年提高14.5%和9.2%; 秸秆氮素积累量则随中后期追肥用量的增加而增多, 基-蘖-穗肥比例40-30-30处理最多。不施秸秆条件下, 基-蘖-穗肥比例60-20-20的处理氮素干物质生产效率、 氮素稻谷生产效率、 氮收获指数均最高, 百公斤籽粒吸氮量最低。秸秆还田条件下, 氮素干物质生产效率和氮素稻谷生产效率均随中后期追肥量的增加而下降, 而百公斤籽粒吸氮量则最高。氮素农学效率、 氮肥回收利用率和偏生产力也是60-20-20比例的处理最高, 较对照N80-0-20农学效率分别提高4.90和2.44 kg籽粒/kg N, 氮肥利用率提高7.82和21.29个百分点, 偏生产力提高4.90和2.44个百分点。【结论】综合水稻产量、 氮素吸收量以及氮肥利用效率, 安徽省江淮丘陵低产白土地区, 小麦秸秆直接还田条件下, 单季中稻氮肥的基肥-分蘖肥-穗肥施用比例, 以60-20-20运筹方式较为适宜。  相似文献   

17.
Abstract

Two-phase olive mill waste (TPOMW) and dairy cattle slurry (CS) are two organic materials with low economic value and limited potential for reutilization despite their high concentrations of nitrogen (N) and organic matter. A laboratory incubation for ca. 100 d was performed to assess the short-term N and carbon (C) dynamics in a soil amended with TPOMW, CS and a mixture of both materials in order to: (i) explore the potential benefits of mixing TPOMW with CS to promote mineral N immobilization and avoid nitrate leaching, and (ii) assess the potential for increased soil C stocks after TPOMW, CS or TPOMW+CS application. Our results clearly showed that the combined application of TPOMW+CS caused N immobilization; hence, it contributes to tying up the applied N, resulting in a decrease of critical N leaching, which is usually observed after CS application. No clear N mineralization was observed in the TPOMW+CS treatment during the incubation period.

It appears that an application of 30 Mg ha?1 of TPOMW is enough to decrease net N mineralization from applied CS, as the C:N ratio of the mixture TPOMW+CS is 27. More than 40% of the TPOMW-derived C remained in the soil at the end of the experiment in treatments with single and combined application of TPOMW+CS, indicating that such materials have the potential to increase C stocks in soil. It can be concluded that a combined application of TPOMW+CS is of interest to maintain the CS-derived N in organic form during a longer time period and minimize risks of nitrate leaching, although further studies are necessary to define a better TPOMW:CS ratio which allows a proper plant N uptake.  相似文献   

18.
Crop rotation has been used for the management of soilborne diseases for centuries, but has not often been planned based on scientific knowledge. Our objective was to generate information on Sclerotium rolfsii dynamics under different crop or intercrop activities, and design and test a research approach where simple experiments and the use of models are combined to explore crop sequences that minimize Southern blight incidence.The effect of seventeen green manure (GM) amendments on sclerotia dynamics was analyzed in greenhouse and field plot experiments during two years. The relative densities of viable sclerotia 90 days after winter GM (WGM) incorporation were generally lower than after summer GM (SGM) incorporation, with average recovery values of 60% and 61% for WGM in the field, 66% and 43% for WGM in the greenhouse, and 162% to 91% for SGM in the greenhouse, in 2009 and 2010, respectively. Sclerotia survival on day d after GM amendment was described by the model Sf = Si × exp(−b × d), relating initial (Si) and final (Sf) sclerotia densities. Relative decay rates of the sclerotia (b) in SGM amended soil were largest for alfalfa (0.0077 ± 0.0031 day−1) and sudangrass (0.0072 ± 0.0030 day−1). In WGM amended soil, the largest b values were for oat (0.0096 ± 0.0024 day−1), wheat (0.0090 ± 0.0024 day−1) and alfalfa (0.0087 ± 0.0023 day−1).The effect of three cropping sequences (sweet pepper–fallow, sweet pepper–black oat and sweet pepper–onion) on sclerotia dynamics was analyzed in microplot experiments, and the data were used to calibrate the model Pf = Pi/(α + βPi), relating initial (Pi) and final (Pf) sclerotia densities. Median values for the relative rate of population increase at low Pi (1/α, dimension less) and the asymptote (1/β, number of viable sclerotia in 100 g of dry soil) were 8.22 and 4.17 for black oat (BO), 1.13 and 8.64 for onion (O), and 6.26 and 17.93 for sweet pepper (SwP).By concatenating the two models, sclerotia population dynamics under several crop sequences were simulated. At steady state, the sequence SwP–O–Fallow–BO resulted in the lowest long-term sclerotia density (7.09 sclerotia/100 g soil), and SwP–Fallow in the highest (17.89 sclerotia/100 g soil). The developed methodology facilitates the selection of a limited number of rotation options to be tested in farmers’ fields.  相似文献   

19.
Water repellency is influenced by soil management and biological process. We carried out a 60‐day laboratory incubation experiment to evaluate the effects of straw amendment, together with the intensity and frequency of wetting and drying (W/D), on microbial processes and water repellency. One W/D cycle consisted of 1.5‐day wetting at −0.03 kPa from the soil core bottom and different drying lengths in a temperature‐controlled laboratory, resulting in different drying intensities. At a regular interval, soil respiration rate (SRR) on drying and wetting, soil microbial biomass C and N (SMB‐C and N), and soil water repellency (SWR) after the wetting were measured simultaneously. Rice straw amendment had a greater effect on SRR, but smaller influences on SMB and SMB‐C : N than W/D frequency and drying intensity. The first W/D caused the largest decrease in soil respiration and the soil respiration recovered partly in the subsequent W/D cycles. The increase in SMB and SMB‐C : N as well as metabolic quotient with W/D frequency and intensity suggested a shift of microbial community from bacterial dominance to fungal dominance. SWR was significantly related to SMB‐C (R2= 0.689, P < 0.001). However, this study was limited to these indirect measurements. Direct measurements of fungal biomass and microbial community are needed in the future. The results suggest that rice straw amendment in dry season may increase C sequestration due to reduced decomposition and stabilize soil structure due to the enhancement of microbial induced water repellency.  相似文献   

20.
氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响   总被引:14,自引:4,他引:14  
采用田间试验研究了氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响。结果表明,与农民习惯施氮(N 300 kg/hm2,基肥和拔节肥各占1/2)比较,氮肥后移处理(N210kg/hm2,基肥、拔节肥和孕穗肥各占1/3)在不降低小麦产量的同时,大大提高了氮肥利用率,且全生育期氮素表观损失极低。过量施用氮肥(N 300 kg/hm2)明显提高了60 cm以下土层硝态氮含量,增加了其向地下水淋溶迁移的风险。氮肥后移可提高小麦成熟期0-20cm土层硝态氮积累量,降低其在20-100cm土层的积累。基于冬小麦不同生育阶段的氮素吸收量而进行氮肥后移是可行的,氮肥后移可节省氮肥30%,是较为理想的施氮方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号