首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs.  相似文献   

2.
Rapid detection of central nervous system (CNS) involvement is important for dogs with blastomycosis, as this can affect antifungal drug selection and has been associated with an increased risk of death. Previous reports describing magnetic resonance imaging (MRI) characteristics of canine CNS blastomycosis primarily identified mass lesions. The purpose of this retrospective study was to determine whether other MRI characteristics of CNS blastomycosis may also occur. Medical records of the Purdue University Veterinary Teaching Hospital were searched and four dogs met inclusion criteria. Magnetic resonance imaging characteristics included periventricular edema, periventricular and meningeal contrast enhancement, and ventriculomegaly. Periventricular lesions most commonly involved the rostral horn of the lateral ventricles and the third ventricle. Increased meningeal contrast enhancement involved the cerebrum, thalamus, sella turcica, and brainstem. Findings indicated that, in addition to mass lesions, MRI characteristics of periventricular hyperintensity, contrast enhancement, and ventriculomegaly may also occur in dogs with CNS blastomycosis.  相似文献   

3.
We describe the technique for in vivo cardiac‐gated magnetic resonance imaging (MRI) in normal dogs and its application in two dogs with a large right atrial tumor. The dogs with a cardiac tumor were also imaged using contrast‐enhanced magnetic resonance angiography (CE‐MRA). Cardiac‐gated MRI and CE‐MRA are both feasible in animals with short acquisition times compatible with breath‐hold imaging under anesthesia, and provide detailed two‐ and three‐dimensional (3D) depiction of the cardiac anatomy and great vessels with or without contrast medium. Although cardiac MRI will not replace echocardiography, it is a powerful alternative technique to use when knowledge of the 3D anatomy of the vasculature is required, when precise volume measurements are needed or when myocardial characterization is indicated. As opposed to contrast‐enhanced computed tomography angiography, cardiac MRI does not use ionizing radiation or iodinated contrast medium.  相似文献   

4.
Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1‐weighted (T1‐W) transverse closed‐mouth, T1‐W sagittal closed‐mouth, T1‐W sagittal open‐mouth, and T2‐W sagittal open‐mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1‐W images, mildly hyperintense to muscle on T2‐W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1‐W images and 13/20 (65%) TMJs on T2‐W images. The articular disc was isointense to hyperintense to muscle on T1‐W images and varied from hypointense to hyperintense to muscle on T2‐W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs.  相似文献   

5.
Alberto  Arencibia  DVM  PhD  Jose M.  Vazquez  DVM  PhD  Juan A.  Ramirez  MD  PhD  Gregorio  Ramirez  DVM  PhD  Jose M.  Vilar  DVM  Miguel A.  Rivero  DVM  Santiago  Alayon  MD  Francisco  Gil  DVM  PhD 《Veterinary radiology & ultrasound》2001,42(5):405-408
The purpose of this investigation was to define the magnetic resonance (MR) imaging appearance of the brain and associated structures of the equine head. MR images were acquired in oblique dorsal (T2-weighted), sagittal (T1-weighted), and transverse planes (T2-weighted), using a magnet of 1.5 Tesla and a human body coil. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the cranioencephalic structures. Annotated MR images from this study are intended as a reference for clinical imaging studies of the equine head, specially in the diagnosis of brain diseases in the horse.  相似文献   

6.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

7.
Two dogs with neurologic signs were evaluated by magnetic resonance imaging of the brain. Focal space-occupying lesions were present in both dogs. In the first, the lesion was in the brain stem and in the second, in the cerebellum. In one dog the lesion was only evident after administration of gadolinium-DTPA-dimeglumine. Based on the magnetic resonance images, neoplasia was suspected in both dogs but histopathologically, granulomatous meningoencephalomyelitis was diagnosed.  相似文献   

8.
Detecting canine brain lesions on computed tomography (CT) or magnetic resonance (MR) scans can be difficult if the lesions do not enhance well following administration of intravenous contrast material. Changes in the shape and position of the ventricular system can be important in the diagnosis of such lesions. Normal variation within the canine ventricular system has not been documented. MR scans from 62 normal Labrador retriever type dogs were evaluated. Five dogs had symmetric enlargement of the ventricles, while nineteen dogs had mild to severe ventricular asymmetry. The incidence of asymmetry in normal dogs must be considered when using ventricular configuration as an indication of central nervous system abnormality.  相似文献   

9.
Magnetic resonance imaging was performed in seven dogs with histopathologically-confirmed brain infarcts. The infarcts were non-hemorrhagic in four dogs and hemorrhagic in three dogs. Six dogs had single infarcts involving the cerebrum and one dog had multiple infarcts involving the cerebrum and brain stem. Non-hemorrhagic infarcts were typically wedge-shaped, hypointense on T1-weighted images, hyperintense on T2-weighted images, and did not enhance with gadolinium-DTPA. Hemorrhagic infarcts had mixed intensity on T1- and T2-weighted images, with variable patterns of enhancement.  相似文献   

10.
LOW FIELD MAGNETIC RESONANCE IMAGING OF THE CANINE CENTRAL NERVOUS SYSTEM   总被引:1,自引:0,他引:1  
Magnetic resonance (MR) imaging is a relatively new method of medical imaging. MR studies on the normal canine central nervous system were performed using a low field MR scanner. The regions of interest were the head, neck, and lumbar region. The MR findings in two patients with brain atrophy and cervical neck disc protrusion were also evaluated. Based on our findings it appears that low-field scanners will be satisfactory for use in veterinary diagnostic imaging.  相似文献   

11.
Reversible magnetic resonance (MR) imaging lesions have been described in humans following seizures. This condition has not yet been reported in animals. This paper describes reversible abnormalities identified in 3 dogs using MR imaging that was performed initially within 14 days of the last seizure and follow-up imaging that was performed after 10 to 16 weeks of anticonvulsant therapy. All three dogs had lesions in the piriform/temporal lobes, characterized by varying degrees of hyperintensity on T2-weighted images and hypointensity on T1-weighted images. In one dog, contrast enhancement was evident. On reevaluation, partial resolution occurred in all 3 dogs. In a fourth animal with an olfactory meningioma, similar appearing lesions in the temporal cortex and right and left piriform lobes were identified after seizure activity. A surgical biopsy of the temporal cortex and hippocampus was performed and edema, neovascularization, reactive astrocytosis, and acute neuronal necrosis were evident. These histologic findings are similar to those reported in humans with seizures. Recognizing the potential occurrence of reversible abnormalities in MR images is important in developing a diagnostic and therapeutic plan in canine patients with seizures. Repeat imaging after seizure control may help differentiate between seizure-induced changes and primary multifocal parenchymal abnormalities.  相似文献   

12.
Diffusion‐weighted imaging (DWI) MRI has been primarily reported as a method for diagnosing cerebrovascular disease in veterinary patients. In humans, clinical applications for diffusion‐weighted MRI have also included epilepsy, Alzheimer's, and Creutzfeld–Jakob disease. Before these applications can be developed in veterinary patients, more data on brain diffusion characteristics are needed. Therefore, the aim of this study was to evaluate the distribution of diffusion in the normal canine brain. Magnetic resonance imaging of the brain was performed in ten, clinically normal, purpose‐bred beagle dogs. On apparent diffusion coefficient maps, regions of interest were drawn around the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and cerebral cortex. Statistically significant differences in mean apparent diffusion coefficient were found for the internal capsule, hippocampus, and thalamus. The highest apparent diffusion coefficient (1044.29 ± 165.21 μm2/s (mean ± SD (standard deviation)) was detected in the hippocampus. The lowest apparent diffusion coefficient was measured in the semioval center (721.39 ± 126.28 μm2/s (mean ± SD)). Significant differences in mean apparent diffusion coefficients of the caudate nucleus, thalamus, and piriform lobe were found by comparing right and left sides. Differences between brain regions may occur due to differences in myelination, neural density, or fiber orientation. The reason for the differences between right and left sides remains unclear. Data from the current study provide background for further studies of diffusion changes in dogs with brain disease.  相似文献   

13.
Magnetic resonance (MR) images were made in sagittal and transverse planes through the metacarpophalangeal joint and digit of a horse. The images accurately depicted gross anatomic structures in the leg. Soft tissue structures were defined as separate entities on the images. Histologic varlation in tissues correlated with signal intensity differences on the MR images. Magnetic resonance imaging appears to be a promising imaging modality for evaluating musculoskeletal structures in equine limbs.  相似文献   

14.
The aim of this study was to identify magnetic resonance (MR) signs that aid differentiation of neoplastic vs. non-neoplastic brain diseases in dogs and cats. MR images of 36 dogs and 13 cats with histologic diagnosis of intracranial disease were reviewed retrospectively. Diagnoses included 30 primary and three metastatic brain tumors, 11 infectious/inflammatory lesions, three vascular, one degenerative disease, and one developmental malformation. Upon univariate analysis of 21 MR signs, there were seven that had a significant association with neoplasia: single lesion (P = 0.004), shape (P = 0.015), mass effect (P = 0.002), dural contact (P = 0.04), dural tail (P = 0.005), lesions affecting adjacent bone (P = 0.008), and contrast enhancement (P = 0.025). Increasing age was also found to be associated with neoplasia (P = 0.0001). MR signs of non-neoplastic brain diseases in dogs and cats were more variable than those of brain neoplasia.  相似文献   

15.
Difficulty has been encountered when trying to identify ante mortem prognostic indicators for dogs with meningoencephalitis of unknown etiology (MUE). Identifying MRI imaging parameters associated with prognosis may impact treatment decision‐making for clinician and owner. Our hypotheses for this retrospective cohort study are that dogs diagnosed with MUE that had midline shift on brain MRI would have a poorer survival compared to dogs without midline shift; and that younger age, lower weight, and low cerebrospinal fluid (CSF) cell count would be correlated with improved survival. Medical records were reviewed from two institutions. Inclusion criteria included: clinical signs referable to intracranial disease, brain MRI at presentation, abnormal CSF analysis, and negative infectious disease testing. Magnetic resonance imaging scans were evaluated for midline shift using the T2‐weighted transverse image at the interthalamic adhesion and at the site of maximal deviation. Fifty‐two dogs met the inclusion criteria. Median midline deviation was 0.12 cm. Median survival for dogs with no shift was 906 days and with shift was 84 days. Survival was not significantly different between groups (P = 0.11). This remained true when correcting for age (P = 0.22) and CSF TNCC (total nucleated cell count) (P = 0.12). Age at the time of diagnosis (P = 0.02) and CSF TNCC (P = 0.03) were significantly associated with survival. Cerebrospinal fluid protein value (P = 0.84) and weight (P = 0.82) were not significantly associated with survival. In this study of 52 dogs with MUE, MRI evidence of midline brain shift between 0.04 and 0.3 cm at the level of the interthalamic adhesion was not associated with shorter survival.  相似文献   

16.
Little published information is available to guide therapy for canine and feline patients with Coccidioides infections involving the central nervous system (CNS). The purpose of this cross‐sectional retrospective study was to describe magnetic resonance imaging (MRI) features and outcome for a group of dogs and cats with solitary CNS Coccidiodes granulomas. Nine canine and two feline cases met inclusion criteria; four diagnosed and treated with surgery and fluconazole and seven diagnosed by serology or cytology and treated medically. Three cases had left Coccidioides endemic areas long before developing neurological disease. The MRI lesions shared many features with neoplastic masses. The extra‐axial granulomas often had a lack of a distinct border between the mass and neural parenchyma. Four cases were extra‐axial and seven were intra‐axial, but distinguishing between extra‐axial and intra‐axial locations was sometimes challenging. The surgical cases had good outcomes and histology allowed definitive diagnosis. Medically managed patients also had generally good outcomes, with resolution of clinical signs in most cases. Findings indicated that distinction between neoplasia and focal Coccidioides granulomas based on MRI features is likely to be imprecise. Demonstration of the organism by cytology or histology is required for definitive diagnosis. The role of surgery for improving the outcome of brain or spinal coccidioidomycosis granulomas warrants further study.  相似文献   

17.
Animals with a portosystemic shunt (PSS) often have neurologic abnormalities. Diagnostic imaging, including brain magnetic resonance (MR) imaging, is not performed routinely in these animals. In this study, brain MR images were obtained in 13 dogs and three cats with a PSS, and in 15 dogs and five cats that were neurologically normal and used as controls. All animals with a PSS had widened sulci. In addition, 10 out of 13 dogs with a PSS and one out of three cats with a PSS had hyperintense focal areas in the lentiform nuclei on T1-weighted (T1W) images, which did not enhance after intravenous gadolinium. Following surgical correction of the PSS, MR imaging examinations were repeated in one dog and one cat. The hyperintensity of the lentiform nuclei had decreased. This study indicates that MR imaging findings of widened sulci and hyperintensity of the lentiform nuclei on T1W images may be found in dogs and cats with a PSS.  相似文献   

18.
Magnetic resonance (MR) images of the normal eye and orbit of the dog and cat were acquired. T1-weighted, proton-density, and T2-weighed images were obtained in the oblique dorsal, straight sagittal, and oblique sagittal planes. Signal intensity for the various orbital structures differed among the three resonance techniques. T1-weighted images provided the greatest contrast of the retrobulbar structures. T-1 weighted images also had the highest signal to noise ratio, thereby providing the best anatomic detail. Anatomic components of the globe, retrobulbar structures and ocular adnexa were easily seen in all MR sections. The oblique dorsal and oblique sagittal planes were superior for evaluating the optic nerve in its entirety.  相似文献   

19.
Magnetic resonance images were acquired of the brain of a 7-year-old male Golden Retriever with hydrocephalus secondary to a medullary lesion. Images were acquired prior to and 4 weeks following surgical treatment for the hydrocephalus, and the dog was euthanased following the second imaging session. The MR images demonstrated a medullary lesion with patchy but predominantly hyperintense signal with both T1- and T2-weighting, within which small areas of low signal were scattered. There was little edema associated with this lesion and no enhancement with gadolinium. Postmortem examination revealed the medullary mass to be a dermoid cyst. Several small nodular lesions were identified within the central nervous system on the magnetic resonance images whose origin was uncertain on postmortem examination.  相似文献   

20.
Magnetic resonance imaging (MRI) was performed on gthe brain of 5 normal, anesthetized, neonatal (age 3-to-6 days) Quarter Horse foals. The objectives of the study were to develop a technique for imaging the brain of neonatal foals, and to ascertain their normal brain anatomy. Interavenous propofol was administered for induction and maintenance of general anesthesia. Using spin echo MR techniques, T1 weighted sagittal and transverse views, and spin density and T2 weighted transverse views were successfully made of each foal. MR images provided excellent visualization of many anatomic struictures of the brain and head. MRI of the bgrain is feasible for selected neonantal equine patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号