首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To determine the optimal salinity, stocking density, and algal density for hatchery culture of the Iwagaki oyster Crassostrea nippona larvae, three experiments with salinities of 14, 18, 22, 26, 30, and 34 practical salinity unit (PSU); stocking densities of 0.5, 1, 2, 4, 8, and 12 larvae ml?1; and algal densities of 10, 20, 40, and 100?×?103 cells ml?1 were designed, which included the developmental stages from newly hatched D-larvae to pediveligers. Results showed that larval growth of C. nippona was the fastest at a salinity of 26 PSU, and when salinity was adjusted to a level that was lower or higher than this salinity, survival and growth rate of larvae declined (P <?0.05), resulting both in a decreased mean shell length and a high mortality. Larval growth decreased significantly with increasing stocking density. Larvae reared at 4 larvae ml?1 had the smallest shell length (198.9 μm) and lowest survival rate (7.9%), whereas larvae reared at 0.5 larvae ml?1 had the largest shell length (245 μm) and highest survival rate (66.3%) on day 13. And the shell length of larvae reared at 0.5 and 1 larvae ml?1 was significantly (P?<?0.05) larger than the values in other treatments, except those reared at 2 larvae ml?1 (P?>?0.05). When feeding the single-algal diet of Isochrysis galbana (clone T-ISO), the shell length of larvae increased markedly as the algal density was increased. Larvae reared at the highest algal density (100?×?103 cells ml?1) had the largest mean shell length; however, under the conditions of our experiment, there was no significant difference (P?>?0.05) in growth and survival rates between the treatments at algal densities of 40?×?103 and 100?×?103 cells ml?1. For a large-scale culture, based on the results of this study, a salinity of 26 PSU, stocking density of 0.5–1 larvae ml?1, and algal density of 40?×?103 cells ml?1 are recommended for an early development of C. nippona.  相似文献   

2.
This research examined the effect of initial stocking density and feeding regime on larval growth and survival of Japanese flounder, Paralichthys olivaceus. Larval rearing trials were conducted in nine 50‐L tanks with different initial stocking densities combined with different feed rations (20 larvae/L with standard feed ration [LD], 80 larvae/L with standard feed ration [HD], and 80 larvae/L with four times the standard feed ration [HD+]). Larvae were stocked on 0 days posthatch (DPH) following hatching of the fertilized embryos. Larval total length (TL), survival rates, and final densities were observed on larval settlement (32 DPH) to evaluate larval rearing performance. At 32 DPH, there were no significant differences (p > .05) in TL or survival rates between the LD (46.5 ± 17.0%) and HD+ (40.3 ± 9.4%). The TL and survival rate of HD (23.1 ± 3.5%) were significantly lower than that of LD and HD+ (p < .05). However, the larval density of HD was significantly higher than that of LD (p < .05). HD+ achieved the best larvae production (32.27 ± 7.51 larvae/L), supported by sufficient food source, high water exchange, and proper water quality management (routine siphoning, surface skimming). The larval‐rearing protocols and larval development from hatching to metamorphosis is described in detail, with corresponding photographs taken during the experiment.  相似文献   

3.
Independent and combined effects of stocking density and algal concentration on the survival, growth and metamorphosis of the Bobu Ivory shell Babylonia formosae habei larvae were assessed using a 5 × 5 factorial design with densities of 0.25, 0.5, 0.75, 1.00 and 1.50 larvae mL−1 and algal concentrations of 5, 10, 15, 20 and 25 × 104 cells mL−1 in the laboratory. Larval growth, survival and metamorphosis were significantly affected by both the independent effects of stocking density and algal concentration and by their interaction. The highest per cent survival (72.5%) and metamorphosis (49.5%), fastest growth (41.57 μm day−1) and shortest time to initial metamorphosis (10 days) all occurred at the lowest stocking density and the highest algal concentration. Both crowding and food limitation had independently negative impacts on the survival, growth and metamorphosis of larvae, and these negative impacts were further strengthened by the interaction of a higher stocking density and a lower algal concentration. Moreover, the results suggest that stocking density and algal concentration obviously played different roles in determining larval survival and growth. To maximize survival and growth, B. formosae habei larvae should be reared at a lower stoking density of 0.25 larvae mL−1 and fed a higher algal concentration of 25 × 104 cells mL−1 in large-scale hatchery seed culture.  相似文献   

4.
A series of experiments were conducted to evaluate the effects of diet, stocking density and environmental factors on the growth, survival and metamorphosis of short neck clam Paphia malabarica larvae. These experiments examined the following factors: diet [ Isochrysis galbana , Nannochloropsis salina and a mixture of I. galbana and N. salina (1:1 w/w)], stocking density (1, 3, 5 and 7 larvae mL−1), light intensity (unshaded, partially shaded and fully shaded) and water filtration (unfiltered and sand filtered). Results indicated that N. salina could replace 50% of I. galbana as a food source for the clam larvae with an increase in growth, survival (47.2%), metamorphosis (33.5%) and early settlement. Larval growth decreased significantly with increasing stocking density. A density of 1–3 larvae mL−1 appeared to be optimal for normal growth of clam larvae. Neither diet nor stocking density used in the study had a significant effect on larval survival. Under partially shaded (light intensity=1000–5000 lx) and fully shaded (light intensity <1000 lx) conditions, larval growth was significantly faster than under direct sunlight (unshaded). Larvae grew significantly faster in the unfiltered water than in the filtered water.  相似文献   

5.
In a 210d experiment, the potential of biofloc technology (BFT) was evaluated for Farfantepenaeus duorarum. Water quality parameters, microorganisms profile and proximate analysis of biofloc were also assessed. BFT did not improve the growth performance in F. duorarum when compared to conventional clear-water water exchange system (final weight and survival of 13.3 g and 63.2 %; and 13.9 g and 81.4 %, respectively). Microorganism assessment suggested a higher presence of filamentous cyanobacteria followed by protozoa, nematodes and copepods. Proximate analysis of biofloc showed crude protein and crude lipid means levels of 25 and 0.6 %, respectively, and these values varied during the experiment. F. duorarum seemed to be susceptible to high stocking density and high levels of suspended solids (>15 mL L?1).  相似文献   

6.
The influence of algal diet on survival, growth and development of hatchery reared flat oyster, Ostrea angasi, larvae was investigated in a series of uni, binary and ternary algal diet trials. Early stage larvae (140–230 μm shell length) generally grew faster than late‐stage larvae (230–340 μm shell length) when fed unialgal diets. Of the 24 algal diets evaluated, larvae fed unialgal diets of Isochrysis sp. (T. Iso), Nannochloropsis oculata, Tetraselmis chuii or Pavlova lutheri; a binary diet of T. chuii+T. Iso; or ternary diets of T. chuii+T. Iso combined with P. lutheri or N. oculata had the greatest larval growth, survival, development and metamorphosis, in the respective trials. The correlation between growth rate and spat produced in late‐stage larvae was stronger when fed unialgal diets (= 0.75) than when larvae were fed either binary or ternary diets (= 0.44 and = 0.45 respectively). Marked differences in proportion of spat produced (24 h post metamorphosis) were evident among diets producing similar growth rates. For hatchery production of O. angasi larvae, ternary diets of T. chuii+T. Iso combined with either P. lutheri or N. oculata were the best diets to maximize larval growth rate, development and survival 24 h post metamorphosis.  相似文献   

7.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

8.
ABSTRACT

The present on-farm study assessed the effect of different stocking densities on growth, production, and financial benefits of African sharptooth catfish (Clarias gariepinus) in earthen ponds for 180 days. Low stocking density (LSD), medium stocking density (MSD), and high stocking density (HSD) of 3, 6, and 9 fish m?2, respectively, were tested. C. gariepinus stocked at LSD and MSD showed significantly higher weight gain, specific growth rate, and final mean weight than those cultured at HSD (P < .05). There was a significant linear relationship between the stocking density and the yields and financial variables (P < .05). Net fish yields were significantly higher for C. gariepinus reared at HSD and MSD than those stocked at LSD (P < .05). Similarly, C. gariepinus raised at MSD and HSD generated significantly more profit than those cultured at LSD (P < .05). Results demonstrated that farmers can achieve high net yield and financial benefits by stocking C. gariepinus at HSD of 9 fish m?2.  相似文献   

9.
The objective of this study was to assess the effects of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farmed tilapia (Oreochromis niloticus, GIFT). Juvenile GIFT with an average initial weight of 12.54?±?0.45 g (mean?±?SD) were randomly stocked in 16 tanks (80 L) in a recirculation aquaculture system at four densities of 10 (D1), 20 (D2), 30 (D3), and 40 (D4) fish per tank for 56 days, with quadruplicate for each density. There were no significant differences in water temperature among the four treatments (P?>?0.05). D4 had the significantly lowest dissolved oxygen content (5.52 vs 5.69–6.09 mg L?1) (P?>?0.05) and pH (6.63 vs 6.87–7.20) (P?<?0.05). NO2-N and NH4-N concentrations significantly increased with increasing stocking density (P?<?0.05). Weight gain (WG) and specific growth rates (SGR) decreased with increasing stocking density. The lowest WG (617.20 vs 660.45–747.06%), SGR (3.52 vs 3.62–3.81% day?1), and highest feed conversion ratio (1.68 vs 1.53–1.58) were observed in D4. Fish at D4 had significantly lower condition factor (3.11 vs 3.29–3.37%) and survival rate (91.25 vs 97.50%) than those from D1 and D2 (P?<?0.05). With increasing stocking density, serum total cholesterol, triglyceride, and total protein concentrations decreased (P <?0.05) and aspartate aminotransferase and alanine aminotransferase activities increased (P <?0.05). D4 fish had higher moisture content (78.80 vs 76.97%) and lower crude protein content (18.14 vs 19.39%) in muscle than D1 fish (P?<?0.05). Compared to D1 and D2, D3 and D4 had lower muscle hardness (1271.54–1294.07 vs 1465.12–1485.65 g), springiness (0.62–0.65 vs 0.70–0.72), gumminess (857.33–885.32 vs 1058.82–1079.28 g), and chewiness (533.04–577.09 vs 757.53–775.69 g) (P <?0.05). High stocking density resulted in growth inhibition, declines in flesh quality, and disturbance to several serum biochemical parameters.  相似文献   

10.
The effects of tank colour, larval stocking density, antibiotic administration and water exchange on survival and moulting of blue swimming crab, Portunus pelagicus, were determined. Circular 4‐m3 experimental larval‐rearing tanks were used in triplicate for all treatments. White, dark grey, blue and brown were tested as tank background colours. The stocking densities tested were 10, 20, 40, 60, 80 and 100 larvae L?1. The effect of oxytetracycline was estimated by comparing a treatment with oxytetracycline to a treatment without oxytetracycline administration. The daily water exchange rates tested were 0%, 25%, 50% and 100% of the tank volume. In all treatments, the larvae were fed with Artemia nauplii, rotifers and encapsulated Spirulina. The highest percentage survival was observed in the dark‐grey tanks when the stocking density of larvae was 20 larvae L?1. No larva reached the juvenile crab size in white tanks. No significant difference in survival was found between treated and non‐treated larvae with oxytetracycline when the daily water exchange rate was more than 50%.  相似文献   

11.
The effect of taurine supplementation to a microencapsulated diet at 0 % (T-0 %), 1 % (T-1 %) and 2 % (T-2 %) level on growth performance and taurine content of Nibea albiflora larvae was evaluated. The microencapsulated diet was prepared using wet granulation and fluidized bed coating process. Scanning electron microscopy microphotography of the microencapsulated diet showed the appearance with a dense film around the core. More than 50 % of diet particles were between 250 and 590 μm. A 30-day feeding experiment was conducted with larvae at 15 days after hatching (DAH), in which larvae were weaned at 20 DAH from copepods to the experimental diets or fed copepods throughout the experimental period. The survival and total length of larvae were significantly higher in T-1 % group compared with T-0 % group (P < 0.05). The survival, total length and wet weight of larvae were significantly higher in T-2 % group compared with T-0 % group (P < 0.05). Fish larvae fed copepods had the best growth performance in survival, total length and wet weight, which were significantly higher than those in other treatments (P < 0.05). The taurine content of larvae fed with supplemental taurine (T-2 %, T-1 %) was significantly higher than that of larvae fed without supplemental taurine (T-0 %) (P < 0.05). These results confirmed that taurine is an essential nutrient for N. albiflora larvae.  相似文献   

12.
Labeo rohita (139.92 ± 0.76 mm/24.33 ± 0.45 g) was reared for 92 days in floating square cages (10 m2 area, 1.5 m height) in a pond (2 ha) at six stocking densities (5, 7.5, 10, 15, 20 and 25 fish m?2) each with 3 replicates. Fish were fed daily once in the morning with rice polish and groundnut oil cake (1:1) in dough form at 3 % of the total body weight. Survival ranged from 96 to 100 % in different stocking densities. Final average body weight, average body weight gain, mean daily body weight gain and SGR decreased (P < 0.05) with increasing stocking density. Conversely, final biomass, biomass gain and FCR increased (P < 0.05) with increasing stocking density. The highest growth rate of fish could be achieved up to 60 days at 5 fish m?2 and 92 days at other densities. The reduced growth rate at 10–25 fish m?2 for 60 days of culture indicated that stress is related to size and density of the fish, suggesting that utmost care is required to reduce the stress at high densities. Maximum production and profit was observed at the highest stocking density. Non-lethal levels of water and soil qualities at different sites (cage premises, and 20 and 200 m away from cage area) suggested that cage aquaculture could be done safely covering 0.9 % of pond area. Production of advanced fingerlings in cages was found a viable alternative to their culture in pond.  相似文献   

13.
Two 10-day hatchery experiments were conducted to evaluate s-type (Hawaiian strain) and ss-type (Thailand strain) rotifers Brachionus plicatilis and cryogenically preserved oyster Crassostrea gigas trochophores as first feeds for larval Nassau grouper Epinephelus striatus. Newly hatched grouper larvae were reared at densities of 11.2–20.8/L in 500-L tanks at 36–38 ppt salinity, 25–26 C, and under a 11-h light: 13-h dark photoperiod. Beginning on day 2 posthatching (d2ph), prey were maintained at a density of 20 individuals/mL, while phytoplankton (Nanochloropsis oculata) was maintained at 500 × 103 cells/mL. In experiment 1, survival and growth were higher (P < 0.05) for fish fed small s-type rotifers (mean lorica length = 117 μm; fish survival = 7.96%) selected by sieving than for fish fed non-selected rotifers (mean lorica length = 161 μm; fish survival = 2.13%). These results demonstrated the advantage of small prey size and suggested that super-small (ss-type) rotifer strains would be beneficial. In experiment 2, three feeding regimens were compared: 1) ss-type rotifers (mean lorica length = 147 μm); 2) oyster trochophores (mean diameter = 50 μm) gradually replaced by ss-type rotifers from d5ph; and 3) a mixed-prey teatment of 50% oyster trochophores and 50% ss-type rotifers. Survival was higher (P < 0.05) for larvae fed mixed prey (15.6%) than for those fed rotifers (9.73%) or trochophores and rotifers in sequence (2.55%), which also showed the slowest growth. Oyster trochophores, although inadequate when used exclusively, enhanced survival when used in combination with rotifers, possibly by improving size selectivity and dietary quality. In a pilot-scale trial, larvae were cultured through metamorphosis in two 33.8-m3 outdoor tanks. Fertilized eggs were stocked at a density of 10 eggs/L and larvae were fed ss-type rotifers from d2ph-d20ph, newly hatched Artemia from d15ph-d18ph, 1-d-old Artemia nauplii from d18ph-d62ph. Survival on d62ph was 1.17%, with a total of 5,651 post-metamorphic juveniles produced.  相似文献   

14.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

15.
Manipulation of stocking densities (10, 20, 30, 40 and 50 larvae L?1), each with or without the presence of shelter was conducted to determine the effects on survival, cannibalism and growth performances of larval bagrid catfish Mystus nemurus (Valenciennes 1840) from 2 to 14 days after hatching. This study revealed that stocking density significantly affected survival, cannibalism, total length, feed intake, specific growth rate and final weight of bagrid catfish larvae. Significantly higher survival was observed at moderate stocking density of more than 20 but less than 50 larvae L?1. Survival was significantly low beyond this threshold and was the lowest at 10 larvae L?1, coincides with the highest cannibalism. Total length, feed intake, specific growth rate and final weight were significantly higher at 10 larvae L?1. Shelter significantly improved total length and feed intake. No significant effects of stocking density and shelter were observed on the apparent feed conversion ratio and coefficient of variation. There was also no significant interaction between stocking density and shelter in all parameters. This study suggests that bagrid catfish larvae could be cultured at more than 20 but less than 50 larvae L?1 with the availability of shelter for optimal larviculture condition.  相似文献   

16.

The Catarina scallop Argopecten ventricosus is a highly valued resource. Although its hatchery spat production has already been reported, the effects of initial larval stocking density have never been reported for production purposes. This study evaluates A. ventricosus growth and survival in triplicate using three stocking densities: low (LD; 2 larvae mL?1), medium (MD; 4 larvae mL?1), and high (HD; 6 larvae mL?1). Three-day old larvae were reared in 18-L plastic carboy at 25.6?±?0.5 °C and fed with a microalgal blend of Isochrysis galbana and Chaetoceros calcitrans (1:1 cell number ratio) for 7 days, equivalent to 10 post-fertilization days (PFD). Higher specific growth rate was recorded at LD (15.8?±?0.2%) after 8 PFD of culture compared to MD (1.6?±?0.5%) and HD (4.1?±?1.8%) densities. The least time required for 60% of the larvae to reach the pediveliger stage was recorded at LD condition (10 PFD). Higher survival was recorded at HD (58.8?±?3.1%) at 8 PFD compared to MD (53.5?±?3.1%) and LD (43.9?±?3.0%). After 8 PFD, stocking density was highly related to larval growth and survival. To increase production and growth, and reduce the time required to reach pediveliger stage, stocking density should start with 6 larvae mL?1 and be reduced to 2 larvae mL?1 at 7 PFD.

  相似文献   

17.
This paper reports on a 4 × 4 factorial design experiment conducted to examine the combined effects of temperature and salinity on embryonic development and growth and survival of black-lip pearl oyster, Pinctada margaritifera (L.) larvae. The temperatures used were 20 °C, 25 °C, 30 °C and 35 °C, and the salinities were 25°/oo, 30°/oo, 35°/oo and 40°/oo. Response surface contour diagrams were generated from the survival and growth data to estimate optimal conditions. Normal development of embryos occurred only from 25 °C to 30 °C. The optimal conditions for maximum survival and growth were 26–29 °C and 28–32°/oo. Temperatures of 35 °C or greater were lethal for larvae and, at all temperatures tested, larval growth and survival were lowest at a salinity of 40°/oo.  相似文献   

18.
Larval rearing is affected by a wide range of microorganisms that thrive in larviculture systems. Some seaweed species have metabolites capable of reducing the bacterial load. However, no studies have yet tested whether including seaweed metabolites on larval rearing systems has any effects on the larvae development. This work assessed the development of Sparus aurata larvae fed preys treated with an Asparagopsis armata product. Live prey, Brachionus spp. and Artemia sp., were immersed in a solution containing 0.5% of a commercial extract of A. armata (Ysaline 100, YSA) for 30 min, before being fed to seabream larvae (n = 4 each). In the control, the live feed was immersed in clear water. Larval parameters such as growth, survival, digestive capacity (structural-histology and functional-enzymatic activity), stress level (cortisol content), non-specific immune response (lysozyme activity), anti-bacterial activity (disc-diffusion assay) and microbiota quantification (fish larvae gut and rearing water) were monitored. Fish larvae digestive capacity, stress level and non-specific immune response were not affected by the use of YSA. The number of Vibrionaceae was significantly reduced both in water and larval gut when using YSA. Growth was enhanced for YSA treatment, but higher mortality was also observed, especially until 10 days after hatching (DAH). The mortality peak observed at 8 DAH for both treatments, but higher for YSA, indicates larval higher susceptibility at this development stage, suggesting that lower concentrations of YSA should be used until 10 DAH. The application of YSA after 10 DAH onwards promotes a safer rearing environment.  相似文献   

19.
This study was designed to determine if oyster spat fouling upon adult oysters, Crassostrea virginica, cultured in coastal Georgia could be controlled by stocking density, bag mesh size, substrate type, and tidal level (intertidally or subtidally). Oyster gowth and survival was also monitored for each treatment. Sediment type had no effect on the number of spat per oyster either in intertidal or subtidal areas. Greater growth occurred in subtidal bags placed on sandmud and sandclay substrates. Intertidal mud and sandhnud bottom treatments showed the least growth. Survival of oysters grown intertidally (64%) was better the those cultured subtidally (27%). Mesh size of the oyster growing bags -had no effect upon oysler fouling or growth (shell length) and survival of the oysters they contained. Stocking density did affect oyster fouling, with lower fouling per oyster in higher density treatments. Density had no effect on oyster growth (shell length) or survival at the levels tested. Heavy fouling occurred on all oysters in the mesh and stocking density experiments while they were suspended off-bottom, but an I l -fold decrease in fouling occurred after bags were placed on the sublidal river bottom.  相似文献   

20.
The razor clam (Sinonovacula constricta) is a bivalve species living in the lower to mid intertidal zones along the coasts of China, Japan and Korea. In this study, the effects of temperature, microalgae species and concentration on the absorption efficiency (AE) of cultured adult S Constricta fed with six species of microalgae, including Chlorella sp., Pavlova viridis, Nitzschia closterium f. minutissima, Platymonas subcordiformis, Nannochloropsis oculata and Isochrysis zhanjiangensis was examined. The clams were exposed to three different temperatures (15, 20 and 25°C) and five microalgae concentrations (0.16, 0.27, 0.37, 0.45 and 0.53 mg L?1). The results indicated that under different temperatures, there is significant difference (P < 0.05) in AE and the efficiency peaks at the water temperature of 20°C. Under different microalgae concentrations, the absorption efficiencies were also significantly different (P < 0.05) and there was a negative correlation between AE and microalgae concentration. At different combinations of temperature and microalgae concentration, the absorption efficiencies of Chlorella sp. and N. oculata were lower than those of other microalgae. The interaction of temperature and microalgae concentration affected the AE significantly (P < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号