首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为探讨不同微生物菌群对华北地区中度石油污染土壤的修复效果,在实验室模拟条件下分别进行优势外源石油降解菌群的筛选和优势菌群与植物联合修复试验。结果显示:4种外源石油降解菌群中,PDC-3菌群对中度石油污染土壤总石油烃(TPH,total petroleum hydrocarbons)去除率为84.07%,在各菌群中效果最优;该优势菌群与植物联合修复中度石油污染土壤比单独使用优势菌群修复可获得更好的效果,优势菌群与黑麦草联用及优势菌群与紫花苜蓿联用120 d TPH的去除率分别为91.58%和89.30%,修复后土壤中TPH含量均小于500 mg/kg;同时优势菌群与黑麦草联合修复在90 d即可去除89.32%的土壤TPH,相比选用紫花苜蓿可有效缩短修复周期;优势菌群对土壤TPH的去除起主要作用,其贡献率远高于土著微生物菌群或植物的贡献率;植物对土壤TPH去除的贡献率为4.09%~6.48%,且其作用主要发生在修复过程的中后期;优势菌群单独使用或与植物联合修复中度石油污染土壤120 d均可有效去除C10~C12及C22~C40石油烃组分,去除率为85.14%~100.00%;然而,C13~C21石油烃组分含量表现出阶段性的积累效应;除对土壤石油烃的去除作用外,使用优势菌群进行生物修复存在一定的调节土壤pH、增加土壤肥力,且有利于恢复修复后的土壤功能。  相似文献   

2.
通过田间试验研究了玉米和向日葵两种植物对石油污染土壤的修复作用,考察了外源菌(OX-9)对植物修复的强化和协同效应,对“外源菌一植物”修复效果进行了初步评价。结果表明,在10000mg·k-1污染浓度下,150d玉米、向13葵试验区土壤中石油降解率分别为42.5%和46.4%,较对照区提高了100.5%和118.9%。外源节细菌的施加可使生物修复速度显著加快,150d“DX-9-玉米”和“DX-9-向日葵”试验区石油烃降解率分别达到72.8%和76.4%,较同期单独植物修复的降解率提高了71.3%和64.7%。500d各试验区土壤中石油烃降解率分别为95.5%、96.1%、97.6%和98.9%,土壤中石油烃含量均低于国家标准规定限量(〈500mg·kg-1);土壤主要理化性质、生物群落分布、呼吸强度及植物不同部位中石油烃的残留量与对照无显著差异。结果表明:玉米、向日葵与节细菌对石油污染土壤的联合生物修复效果显著;经过两年修复,污染土壤恢复健康状态。  相似文献   

3.
从石油污染的盐碱土壤中分离获得2株真菌,并对其生理生化性质进行初步研究。将2株菌扩大培养,制成混合菌剂,通过盆栽试验,以石油烃降解率、脱氢酶活性和土壤的微生物多样性等为指标,研究了不同剂量的混合菌剂对石油污染土壤修复的作用。结果表明,添加菌剂各处理的石油烃降解率、脱氢酶活性和微生物多样性明显高于对照;石油烃降解率随菌剂加入剂量的增大而提高,加入8%的菌剂,70 d石油烃降解率可达63%,是对照组的1.44倍。  相似文献   

4.
采用玉米草及海藻寡糖联合修复技术研究了石油污染土壤的修复效果,对修复过程中酶活性变化进行了测定,并采用变性梯度凝胶电泳(DGGE)技术测定了土壤中微生物群落的变化。结果表明,种植玉米草可以有效提高土壤中石油烃的降解,与对照相比石油烃降解率增加了11%;加入不同浓度海藻寡糖进一步增加了石油烃的降解效果,降解率最高达到28.6%。种植植物及加入海藻寡糖可以有效提高多酚氧化酶、脱氢酶及尿酶的活性。PCR-DGGE结果表明植物种植及海藻寡糖的加入增加了土壤中微生物数量,其微生物群落结构与未种植植物及修复前土壤相比发生了较大的变化。  相似文献   

5.
采用淋洗施肥修复方法处理石油污染盐碱土壤,评价该修复方法对石油污染盐碱土壤的修复效果,并且采用最大或然数法和Biolog方法对土壤微生物数量和微生物群落水平生理特性进行研究。结果表明,经过182d的培养,淋洗施肥处理中油和脂的降解率分别比对照处理和施肥处理高(19.7±4.3)%和(13.8±3.4)%,土壤盐分去除率分别比对照处理和施肥处理高(66.5±2.9)%和(41.3±6.2)%,说明该处理是一种修复石油污染盐碱土壤的有效方式。淋洗施肥处理明显提高异养细菌、石油烃降解菌、烷烃降解菌和多环芳烃降解菌数量和土壤微生物活性,促进了微生物对土壤中油和脂的降解。此外,淋洗施肥处理提高了土壤微生物Shannon多样性指数和Simpson指数,促进了微生物种群的稳定,这暗示着土壤微生物种群正在逐渐恢复。  相似文献   

6.
采用含有4种菌的菌剂与多种有机肥联合修复石油污染土壤,通过盆栽实验对不同浓度菌剂处理土壤中的石油烃降解率、16种多环芳烃(PAHs)浓度、脱氢酶活性、pH、阳离子交换量和微生物多样性等变化进行了研究。结果表明,腐植酸、诺沃肥和生物有机钙等有机肥和菌剂(4%处理)的加入使土壤盐碱环境得到明显改善,土壤pH稳定于6.9,阳离子交换量为201.94cmol·kg-1;对比4个不同浓度菌剂处理的效果,4%菌剂处理与有机肥联合作用修复效果最显著,石油烃降解率可达到73%,大部分所测PAHs浓度显著降低,其中萘、蒽、苯并(a)芘和苯并(g,h,i)芘降解率分别达到了65.5%、57.7%、74.7%和55.5%,土壤微生物数量增加,多样性更为丰富。  相似文献   

7.
菌剂-菌根联合修复石油污染土壤的实验研究   总被引:5,自引:1,他引:5  
何翊  魏薇  吴海 《土壤》2004,36(6):675-677
植物根际是一个能降解土壤中污染物的生物活跃区。本文应用菌根修复技术对某污灌区石油烃污染土壤进行了处理。在污染土壤中种植玉米和黄豆,通过施加不同的菌剂,采取菌剂和菌根强化修复措施,在运行一个生长季节后,土壤中石油类污染物降解率可达53%~78%。本研究为该地区石油污染土壤的治理提供了有力的技术保证。  相似文献   

8.
高羊茅和优良菌群联合作用降解陕北黄绵土中的石油烃   总被引:3,自引:1,他引:2  
杨琴  聂麦茜  苏君梅  蒋欣 《土壤》2009,41(3):471-476
以长庆油田石油开采区的烃污染土壤作为供试土壤,以高羊茅为供试植物.从陕北石油污染土壤和污染泥浆中分别获得菌群 TJQ 和菌群 JQ1;用原油污染城市花园土,经过 90 天驯化获得菌群 JQ2,3 菌群中主要以细菌和真菌为主,放线菌较少.降解结果表明,与对照组相比,接种菌群 JQ1、JQ2 、TJQ 及其混合体使土壤中石油降解速率加快,30 天内石油烃去除率提高了13.8% ~ 25.4%,微生物 FDA 活性增长 2 ~ 3倍,其中 JQ1+JQ2 组合对石油降解幅度最大,30 天降解率可高达 35.36%.尽管供试土壤中 N、P 和有机质含量少,pH 偏碱性,土壤贫瘠,不利于植物生长,但高羊茅与各菌群及其混合体联合作用,在其出苗、生长的同时,能明显提高土壤中石油降解效率.与未种植高羊茅相比,30 天内,石油降解率最大可提高 14.4%,其中 JQ1+JQ2+高羊茅组合对土壤中石油烃降解幅度最大,30 天降解率最高达 49.81%.且根际微生物的数量也相应高出 1 ~ 2 个数量级, 微生物 FDA 活性高出 0.53 ~ 1.26 倍.  相似文献   

9.
油污土壤修复微生物的筛选及其影响因素   总被引:1,自引:0,他引:1  
[目的]探讨微生物原位修复的主要影响因素及水平(正交设计)之间的关系,为石油污染场地生物修复工程的参数设计提供一定理论依据。[方法]选取5因素4水平的正交设计,考察污染强度、营养物、氧化剂、表活剂、接菌量等因素对土壤修复效果的影响。[结果]以原油为唯一碳源经过初步筛选,获得16株石油烃降解优势菌,经过菌群复筛,获得2株偏利共生协同真菌DPF2,DPF4,协同降解率最高,7d达87.77%。选择其进行室内油污土壤的微生物修复模拟试验,60d石油污染强度为10的油污土壤降解率最高,可达94.12%。污染强度为25的油污土壤降解率为90.17%,SPSS数据分析表明生物修复影响的最大影响因素是氧化剂、表活剂和营养物,其次是污染强度、接菌量。[结论]初期添加表活剂、氧化剂、营养剂能对石油生物修复具有重要意义。污染强度仅在35d前有一定影响,在修复后期影响最小。在整个修复过程,接菌量方差均值与其他因素比较都最小,因此其因素水平对石油降解能力的影响不显著。  相似文献   

10.
在对石油污染土壤理化性质和微生物数量研究的基础上,通过接种含石油降解菌的菌剂、添加营养、定期翻动以及栽种植物等方式对其进行了修复。试验表明,添加氮磷等营养后,土壤中的烃降解菌明显增加,石油降解速率显著加快,但接种菌剂以及定期翻动对降解率没有显著影响。在修复试验进行到120 d后,对部分处理进行了植物修复。试验表明栽种狼尾草后,土壤中石油降解速率显著加快,生物毒性明显降低。另外,试验结束后对土壤中的总DNA进行了提取和基于16S rDNA V3区的PCR-DGGE研究。结果表明,经过修复处理改变了土壤中优势细菌的群落结构,使土壤细菌多样性增强。  相似文献   

11.
【目的】以富士(Fuji)、 秦冠(Qinguan)嫁接在平邑甜茶(Malus hupehensis Rehd.)上的当年生盆栽苗为试验材料,采用砂培方法,研究了缺氮胁迫和干旱对富士和秦冠生长情况、 光合参数、 植株各部位氮磷钾含量及氮素利用效率的影响,分析比较了低氮干旱条件下富士和秦冠生长及氮素利用的差异,以期为果树生产高效肥水利用提供理论指导。【方法】试验共设四个处理: 正常氮正常水(ZZ)、 低氮正常水(DZ)、 正常氮干旱(ZG)、 低氮干旱(DG)。氮素和水分均设置两个水平,分别为正常氮(6 mmol/L NO-3-N)、 低氮(0.3 mmol/LNO-3-N)、 正常供水(保持盆中砂子相对含水量为饱和含水量的80%~85%)、 干旱处理(保持盆中砂子相对含水量为饱和含水量的60%~65%)。【结果】富士和秦冠的生物量(茎和叶)、 株高茎粗等生长指标以及光合速率、 气孔导度、 蒸腾速率均为正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG),并且相对应处理下秦冠的以上指标均高于富士;正常供水下,缺氮处理使富士、 秦冠的根冠比比正常氮处理均有所增加,富士提高了2.05%,秦冠提高了22.40%。富士和秦冠的氮、 磷、 钾含量均表现出正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG); 氮、 钾元素含量在植株各部位的分布顺序依次是叶>根>茎,磷元素则是根>叶>茎;光合氮素利用效率(PNUE)和氮素利用效率表现为秦冠处理之间差异极显著,富士处理之间差异不显著;秦冠的PNUE和NUE明显高于富士,在低氮正常水(DZ)处理下,秦冠氮肥利用率比富士高42.07%,在低氮干旱(DG)处理下高64.14%;低氮胁迫下富士和秦冠的NUE显著提高,并且秦冠提高的幅度高于富士。【结论】施用氮肥能够显著提高富士与秦冠的干物质量,同等水肥条件下,秦冠生长优于富士;水分亏缺会减少叶片对氮的吸收,干旱条件下适度增施氮肥,可提高果树的抗旱能力;低氮干旱胁迫下秦冠的生长指标、 光合指标及氮素利用效率指标均优于富士,表现出较强的抗低氮干旱胁迫的能力。  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) is a new technique for the analysis of plant material. This study investigates the application of LIBS to pasture-based plant samples. The LIBS measurements were obtained from pelletized pasture samples (100 samples) that had been also analyzed by inductively coupled plasma–optical emission spectroscopy (ICP-OES) following microwave digestion for calibration and comparison purposes. Comparisons for elements sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), boron (B), phosphorus (P), and sulfur (S) showed that LIBS could be used for almost all the standard profile total elements with concentrations down to low mg/kg levels (observed error of Na: 0.024 percent, K: 0.18 percent, Mg: 0.016 percent, Ca: 0.073 percent, P: 0.017 percent, Mn: 31 mg/kg, Fe: 150 mg/kg, Zn: 6.6 mg/kg, and B: 1.1 mg/kg). Elemental analysis at less than mg/kg levels was not possible using LIBS. The elements S and Cu were particularly difficult to analyze with reliability using LIBS at the concentration levels found in the plant samples. Replacing microwave digestion and subsequent ICP analysis with a direct analysis of dried plant samples using LIBS has the potential to improve the productivity and reduce the cost of testing.  相似文献   

13.
正The Center for Agricultural Resources Research(CARR),the Institute of Genetics and Developmental Biology(IGDB),Chinese Academy of Sciences,invites applicants for several research group leader positions.CARR is one of the research organizations in Chinese Academy of Sciences(CAS).We seek nominations and applications from individuals who have expertise and a record of accomplishment in research areas related to ecology,agro-hydrology,  相似文献   

14.
The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups, and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station, we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term experiment designed to examine the effects and interactions of annual fire, mowing, and fertilization (N and P) on prairie soil communities and processes. For nearly all taxa, in both years, responses were characterized by significant treatment interactions, but some general patterns were evident. Introduced European earthworms (Aporrectodea spp. and Octolasion spp.) were most abundant in plots where fire was excluded, and the proportion of the total earthworm community consisting of introduced earthworms was greater in unburned, unmowed, and fertilized plots. Nymphs of two Cicada genera were collected (Cicadetta spp. and Tibicen spp.). Cicadetta nymphs were more abundant in burned plots, but mowing reduced their abundance. Tibicen nymphs were collected almost exclusively from unburned plots. Treatment effects on herbivorous beetle larvae (Scarabaeidae, Elateridae, and Curculionidae) were variable, but nutrient additions (N or P) usually resulted in greater densities, whereas mowing usually resulted in lower densities. Our results suggest that departures from historical disturbance regimes (i.e. frequent fire and grazing) may render soils more susceptible to increased numbers of European earthworms, and that interactions between fire, aboveground biomass removal, and vegetation responses affect the structure and composition of invertebrate communities in tallgrass prairie soils.  相似文献   

15.
Abstract

A 3-year study was carried out to investigate quality parameters in 14 tree fruit and berry species grown in southern Norway. The species were blueberry, apple, aronia, sour cherry, sweet cherry, red raspberry, strawberry, blackcurrant, gooseberry, red currant and elderberry, harvested along with wild bilberry, cloudberry and lingonberry. Significant differences between species were identified for all quality parameters. The coefficient of variation between species was lowest for pH (12.5%), dry matter (18.9%) and soluble solids (25.3%), followed by titratable acids (59.3%), total phenolics (83.8%), antioxidant capacity FRAP (85.7%) and antiradical power by the DPPH-assay (97.8%), total monomeric anthocyanins (132%) and ascorbic acid (137%). Average coefficient of variation within species were lower and ranged from 4 (pH) to 62% (ascorbic acid). Only the FRAP values were significantly affected by harvesting year with lower levels in 2004 than in 2005 and 2006. There were significant interactions between species and harvesting year for dry matter, soluble solids, pH, ascorbic acid and FRAP. The results indicate generic ranges in composition within species independent upon growing location and climate, and the composition of the tree fruits and berries is not likely to deviate from these ranges. It is concluded that desirable composition of tree fruits and berries and their products should primarily be achieved by selection among species rather than searching fors broadened variation within individual species.  相似文献   

16.
Potassium (K) fixation and release in soil are important factors in the long-term sustainability of a cropping system. Changes in K concentration and characteristics of K fixation and release in rhizosphere and nonrhizosphere soils in the rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation were investigated using a rhizobox system. The concentrations of different forms of K in both rhizosphere and nonrhizosphere soils decreased with plants compared to without plants, regardless of K fertilizer application. Potassium uptake by crops mainly came from the rhizosphere soil. In the treatment without K fertilizer (–K), the main form of K supplied by the soil to the crops was 1.0 mol L?1 nitric acid (HNO3) nonextractable K, followed by nonexchangeable K, and then exchangeable K. In the treatment with K fertilizer (+K), the main K forms supplied by the soil to the crops were exchangeable K and nonexchangeable K. The amount and rate of K fixation after one cycle of the rapeseed–rice rotation was greater in rhizosphere soil than in nonrhizosphere soil. The amount and rate of K fixation of soil in the +K treatment were significantly less than in the –K treatment. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions, but the K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was less in rhizosphere soil than in nonrhizosphere soil. The release of K in the +K treatment was similar to that in the –K treatment in rhizosphere soil, but the K release in nonrhizosphere soil was greater with the +K than the –K treatment. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

17.
Biologically enhanced dissolution offers a method to speed removal of chlorinated solvent dense non-aqueous-phase liquid (DNAPL) sources such as tetrachloroethene (PCE) and trichoroethene (TCE) from aquifers. Bioremediation is accomplished by adding an electron donor to the source zone where fermentation to intermediates leading to acetic acid and hydrogen results. The hydrogen and possibly acetic acid are used by dehalogenating bacteria to convert PCE and TCE to ethene and hydrochloric acid. Reductive dehalogenation is thus an acid forming process, and sufficient alkalinity must be present to maintain a near neutral pH. The bicarbonate alkalinity required to maintain pH above 6.5 is a function of the electron donor: 800 mg/L of bicarbonate alkalinity is sufficient to achieve about 1.2 mM TCE dechlorination with glucose, 1.7 mM with lactate, and a much higher 3.3 mM with formate. Laboratory studies indicate that in mixed culture, formate can be used as an electron donor for complete conversion to ethene, contrary to pure cultures studies indicating it cannot. Various strategies can be used to add electron donor to an aquifer for DNAPL dehalogenation while minimizing pH problems and excessive electron donor usage, including use of injection-extraction wells, dual recirculation wells, and nested injection-extraction wells.  相似文献   

18.
Staff members of the Department of Botany of Palacký University in Olomouc and Gene Bank Department – Workplace Olomouc, Research Institute of Crop Production in Prague, Czech Republic, conducted an expedition in seven European countries (Austria, Czech Republic, France, Germany, Italy, the Netherlands, Switzerland) in August/September 1999 to collect wild Lactuca spp. germplasm and study its geographic distribution, ecology and biodiversity. During the mission, more than 600 locations were visited resulting in the collection of 602 seed samples (accessions) of wild Lactuca species and 13 seed samples of related genera (Chondrilla and Mycelis). Lactuca serriola f. serriola, L. serriola f. integrifolia, L. saligna and L. viminea subsp. chondrilliflora were prevalent in southern Europe (Italy, France), however, only L. serriola was common in central and western Europe (Austria, Czech Republic, Germany, Netherlands, Switzerland). The greatest diversity of Lactuca species was found in France, where also the most seed samples (165) were collected. The most characteristic habitats with a high density of Lactuca spp. populations were observed along roads and highways, grassy ditches, ruderal communities, and dust-heaps. Natural infections by powdery mildew (Erysiphe cichoracearum) and downy mildew (Bremia lactucae) on some wild Lactuca spp. were observed. Recent observations concerning the geographic distribution, population structure, habitats, and natural occurrence of diseases of Lactuca spp. are discussed. This assemblage of genetic resources of Lactuca spp. can serve as the basis of future studies of species diversification, spatial population structure, plant microevolution, domestication processes, and genetic variability of host-parasite interactions.  相似文献   

19.
Inoculation of wheat seedlings with the plant growth-promoting bacterium Azospirillum brasilense Cd was immobilized in alginate microbeads and, without applying any stress, significantly increased the quantity of several photosynthetic pigments, such as chlorophyll a, chlorophyll b, and the auxiliary photoprotective pigments violaxanthin, zeaxanthin, antheroxanthin, lutein, neoxanthin, and β-carotene. This resulted in greener plants with no apparent visible stress. After monitoring the quantity of photosynthetic pigments for 4 weeks, we observed that inoculated plants had higher quantities of pigments in shoot and stem. The greatest difference in the quantity of all pigments between inoculated and noninoculated plants occurred in the first week of growth. Regardless of treatment, the quantity of pigments in stems was three to four times less than the quantity of these pigments in shoots. Application of Azospirillum, either as liquid inoculant or as alginate microbeads, did not alter the positive effect of the bacteria on pigment production or the positive response of the plants towards A. brasilense Cd inoculation.  相似文献   

20.
We examined the community composition of microbes that colonized atrazine-containing beads buried in agricultural soils that differed in atrazine treatment history. Bacterial abundance was 5-40-fold greater in atrazine-fortified beads. In beads containing 20 mg atrazine kg−1 buried in soil with a history of atrazine application (conditioned soil), the abundance of Actinobacteria increased approximately 80-fold whereas in control soil, Actinobacteria were enriched only 10-fold and the gamma-Proteobacteria and Planctomycetes increased by 60- and 25-fold, respectively. The gamma-Proteobacteria were enriched by 120- and 230-fold in beads containing 200 mg atrazine kg−1 in conditioned and control soil, respectively. The results demonstrate that BioSep® beads are a suitable matrix for recruiting a diverse subset of the bacterial community involved in atrazine degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号