首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in numbers of ovarian follicles and coincident secretion of pituitary gonadotropins were characterized in suckled, anovulatory beef cows injected iv with 500 ng of luteinizing hormone-releasing hormone (LHRH) every 2 h for 48 or 96 h, starting 21.4 +/- .4 d after parturition. Two hours after the last injection, all cows were ovariectomized. Compared with saline-injected controls, LHRH had no effect on baseline or overall concentrations of luteinizing hormone (LH) in serum (P greater than .10), but increased (P less than .05) frequency and decreased (P less than .05) amplitude of LH pulses. Luteinizing hormone-releasing hormone increased (P less than .05) baseline concentration of follicle stimulating hormone (FSH) in serum and frequency of FSH pulses, but decreased (P less than .05) pulse amplitude. Overall concentrations of FSH increased 20% (P less than .10). Exogenous LHRH did not affect diameter of the two largest follicles or numbers of follicles 1.0 to 3.9 mm, 4.0 to 7.9 mm or greater than or equal to 8.0 mm in diameter. These data suggest that increasing the frequency of episodic LH and FSH pulses in postpartum cattle by intermittent administration of LHRH did not increase mean circulating levels of LH, or alter size and numbers of ovarian follicles within the 96-h period of injections. Thus, induction of ovulation in anovulatory cows treated with low-dose injections of LHRH cannot be explained on the basis of an increase in mean concentrations of LH or numbers of antral follicles within 96 h after initiation of injections.  相似文献   

2.
Nutritionally induced anovulatory cows were ovariectomized and used to determine the relationships between dose, frequency, and duration of exogenous gonadotropin-releasing hormone (GnRH) pulses and amplitude, frequency, and concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. In Experiment 1, cows were given pulses of saline (control) or 2 micrograms of GnRH infused i.v. during a 0.1-, 1.25-, 5-, 10-, or 20-min period. Concentrations of LH and FSH during 35 min after GnRH infusion were greater than in control cows (P < 0.01), and FSH concentrations were greater when GnRH infusions were for 10 min or less compared with 20 min. In Experiment 2, the effect of GnRH pulse frequency and dose on LH and FSH concentrations, pulse frequency, and pulse amplitude were determined. Exogenous GnRH (0, 2, or 4 micrograms) was infused in 5 min at frequencies of once every hour or once every 4th hr for 3 d. There was a dose of GnRH x frequency x day effect on LH and FSH concentrations (P < 0.01), indicating that gonadotropes are sensitive to changes in pulse frequency, dose, and time of exposure to GnRH. There were more LH pulses when GnRH was infused every hour, compared with an infusion every 4th hr (P < 0.04). Amplitudes of LH pulses were greater with increased GnRH dose (P < 0.05), and there was a frequency x dose x day effect on FSH pulse amplitude (P < 0.0006). We conclude that LH and FSH secretion in the bovine is differentially regulated by frequency and dose of GnRH infusions.  相似文献   

3.
Cows with ovarian follicular cysts were treated with progesterone to determine whether a reduction in LH concentrations and initiation of ovulatory follicular waves would occur. Cysts were diagnosed using transrectal ultrasonography when single follicular structures > 20 mm or multiple structures > 15 mm in diameter were present for 7 d in the presence of low progesterone concentrations. Three groups were studied: 1) cows with normal estrous cycles (CYC, n = 8); 2) cows with untreated cysts (CYST, n = 7); and 3) cows with cysts treated with two progesterone-releasing intravaginal devices (PRID, n = 8) for 9 d. Ovaries were examined with transrectal ultrasonography, and blood samples were collected daily for analysis of progesterone and FSH. Serial blood samples for determination of mean LH and LH pulse frequency were collected on d 0 (CYST and PRID cows only), 1, 5, 9, and 10. Progesterone concentrations were higher in PRID cows than in CYST cows throughout the PRID treatment period (P < .002). On d 0, LH pulse frequency was similar (P = .10) in PRID (6.6+/-.6 pulses/8 h) and CYST cows (5.1+/-.6 pulses/8 h), but mean LH tended to be higher (P = .054) on d 0 in PRID cows (2.5+/-.2 ng/mL) than in CYST cows (1.9+/-.2 ng/mL). Mean LH and LH pulse frequency decreased (P < .002) by d 1 in PRID cows (1.1+/-.2 ng/mL, 1.8+/-.6 pulses/8 h) compared with CYST cows (2.1+/-.2 ng/mL, 5.6+/-.6 pulses/8 h) and remained lower throughout most of the experimental period. The FSH concentrations were higher (P < .01) in PRID cows than in CYC and CYST cows on d 3 and 4. The increase in FSH concentrations preceded emergence of the PRID-induced follicular wave. All PRID cows and four of seven CYST cows initiated new follicular waves during the period of PRID treatment. Follicular waves were initiated later (P < .05) in CYST cows (d 5.2+/-1.7) and PRID cows (d 5.5+/-.6) than in CYC cows (d 1.8+/-.3). Cysts were smaller (P < .01) at the end of the treatment period in PRID cows compared with CYST cows. No CYST cows ovulated, but all PRID cows ovulated newly developed follicles 3 or 4 d after PRID removal. Treatment with exogenous progesterone reduced LH in cows with cysts, and this was followed by development of normal ovulatory follicles.  相似文献   

4.
The effects of calf isolation and restricted suckling on LH pulse characteristics and interval to first ovulation (postpartum interval) were studied in 52 multiparous beef cows, with or without exogenous progesterone. At 30 d postpartum, cows were randomly allocated to one of four treatments (n = 13/treatment): 1) Ad lib, ad libitum access of cows to calves; 2) CI/RS, calf isolation/restricted suckling, where suckling was restricted to once daily; 3) CI/RS+P4, same as CI/RS but cows received an intravaginal progesterone-releasing device at calf isolation for 6 d; or 4) CI/RS+P4+E2, as CI/RS+P4 but the intravaginal progesterone-releasing device had a 10-mg estradiol capsule attached. Daily ovarian scanning and twice-daily blood sampling were performed from d 25 postpartum until the day of second ovulation. A random sample of cows from each treatment (n = 31 in total) were blood-sampled at 15-min intervals for 10 h on d 29, 32, 35, and 38. Ovulatory response to treatment was regarded as ovulation of either the dominant follicle growing at d 30 or the subsequent DF. There was a treatment x day effect (P = .09) on LH pulse frequency, but neither progesterone (CI/ RS+P4) nor progesterone and estradiol (CI/RS+P4+E2) treatment suppressed the calf isolation/restricted suckling-induced increase in LH pulse frequency. The estradiol capsule (CI/RS+P4+E2) delivered sufficient estradiol to delay new follicle wave emergence (treatment x stage; P < .001) and the associated preemergence increase in concentrations of FSH (treatment, P < .05) in cows treated at the postselection stage of follicle wave development, prolonging dominance of the dominant follicle present at treatment initiation (P < .001). The number of cows that ovulated in response to treatment was greater (P < .001) in cows with calf isolation/restricted suckling than in cows suckled ad libitum. Hence, cows assigned to the Ad lib treatment had a longer postpartum interval (P < .001) than cows of the other treatments. Exogenous progesterone treatment increased the frequency of cows exhibiting clinical signs of estrus at first ovulation (P < .001) and reduced the frequency of short estrous cycles (P < .001). We conclude that, in beef cows with calves, a 6-d progesterone treatment does not suppress the calf isolation/restricted suckling-induced increase in LH pulse frequency. Hence, on progesterone withdrawal, the LH pulse frequency is sufficient to stimulate first ovulation, accompanied by overt estrous expression and elimination of a short estrous cycle in most cows.  相似文献   

5.
Thirty-five ovariectomized pony mares were used to study the relationships among luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) concentrations in blood (secretion), in pituitary (storage) and in blood after secretagogue administration, as well as the content of gonadotropin releasing hormone (GnRH) in hypothalamic areas, under various conditions of steroidal and nonsteroidal treatment. Five mares each were treated daily for 21 d with vegetable shortening (controls), testosterone (T; 150 micrograms/kg of body weight, BW), dihydrotestosterone (DHT; 150 micrograms/kg BW), estradiol (E2; 35 micrograms/kg BW), progesterone (P4; 500 micrograms/kg BW), dexamethasone (DEX; 125 micrograms/kg BW) or charcoal-stripped equine follicular fluid (FF; 10 ml). Secretagogue injections (GnRH and thyrotropin releasing hormone, TRH, at 1 and 4 micrograms/kg of BW, respectively) were given one d prior to treatment and again after 15 d of treatment. Relative to controls, treatment with T, DHT and DEX reduced (P less than .05) LH secretion, storage and response to exogenous GnRH, whereas treatment with E2 increased (P less than .05) these same characteristics. Treatment with P4 reduced (P less than .05) only LH secretion. Treatment with T, DHT, E2 and DEX reduced (P less than .05) FSH secretion, whereas treatment with P4 increased (P less than .05) it and FF had no effect (P greater than .1). All treatments increased (P less than .05) FSH storage, whereas only treatment with T and DHT increased (P less than .05) the FSH response to exogenous GnRH. Other than a brief increase (P less than .05) in PRL secretion in mares treated with E2, secretion of PRL did not differ (P greater than .1) among groups. Only treatment with E2 increased (P less than .01) PRL storage, yet treatment with T or DHT (but not E2) increased (P less than .05) the PRL response to exogenous TRH. Content of GnRH in the body and pre-optic area of the hypothalamus was not affected (P greater than .1) by treatment, whereas treatment with T, E2 and DEX increased (P less than .1) GnRH content in the median eminence. For LH, secretion, storage and response to exogenous GnRH were all highly correlated (r greater than or equal to .77; P less than .01). For FSH, only storage and response to exogenous GnRH were related (r = .62; P less than .01). PRL characteristics were not significantly related to one another. Moreover, the amount of GnRH in the median eminence was not related (P greater than .1) to any LH or FSH characteristic.  相似文献   

6.
The effect of Cu status, supplementation, and source on pituitary responsiveness to exogenous GnRH was evaluated using nine multiparous, nonpregnant, nonsuckling, ovariectomized Angus cows (7.1 +/- 3.3 yr; 622.9 +/- 49.8 kg; BCS = 6.0 +/- 0.5). Cows were considered Cu-deficient based on liver Cu concentrations (< 30 mg of Cu/kg of DM) after receiving a low-Cu, forage-based diet supplemented (DM basis) with 5 mg of Mo/kg and 0.3% S for 216 d. Copper-deficient cows were stratified based on age, BW, BCS, and liver Cu concentration and assigned randomly to repletion-phase treatments. Treatments included 1) control (no supplemental Cu); 2) organic (ORG; 100% organic Cu); and 3) inorganic (ING; 100% inorganic CuSO4). Treatments were formulated to meet all NRC recommendations, except for Cu, which was supplemented to ORG and ING cows at 10 mg of Cu/kg of dietary DM. During the 159-d repletion phase, Cu status was monitored via liver biopsy samples, and all cows received exogenous progesterone. A controlled intravaginal drug-release device (replaced every 14 d) was used to maintain luteal phase progesterone as a means to provide negative feedback on the hypothalamic-pituitary axis. During the repletion phase, liver Cu concentrations did not differ between ORG and ING cows at any time. By d 77 of the repletion phase, all supplemented cows were considered adequate in Cu, and liver Cu concentrations were greater in supplemented than in nonsupplemented control cows on d 77 (P < 0.05) and throughout (P < 0.01) the repletion phase. Beginning on d 99, exogenous GnRH was administered to all cows at low (0, 3, and 9 microg; Exp. 1) and high doses (0, 27, and 81 microg; Exp. 2) at six different times. Cows were catheterized every fifth day, and blood samples were collected every 15 min for 1 h before and 4 h after GnRH administration and analyzed for LH concentration. In Exp. 1, Cu status and supplementation did not affect basal or peak LH concentrations, but total LH released tended (P < 0.07) to be greater in Cu-supplemented vs. control cows when 3 microg of GnRH was administered. In Exp. 2, there was no effect of Cu supplementation or source on basal, peak, or total LH released, regardless of GnRH dose. Pituitary LH concentrations did not differ across treatments. In conclusion, Cu status, supplementation, and source did not affect GnRH-induced LH secretion or pituitary LH stores in ovariectomized, progesterone-supplemented cows in this experiment.  相似文献   

7.
This experiment was conducted to 1) determine whether chronic cystic-ovarian-diseased (CCOD) cows fail to respond to luteinizing hormone (LH) treatment because of a lack of adequate ovarian LH receptors and 2) determine the effect of follicle stimulating hormone (FSH) treatment on ovarian LH and FSH receptors in ovaries of CCOD cows. The CCOD cows were those that did not resume cyclic ovarian activity after repeated treatment with human chorionic gonadotropin (hCG) and(or) LH-releasing hormone (LHRH) and were considered chronic by veterinarians. Thirteen CCOD cows were purchased from producers; six of them were injected with 5 mg FSH twice daily for 3 or 5 d (TCCOD) and the remaining seven remained untreated. Seven control (noncystic) cows in the luteal phase of the estrous cycle were injected with Lutalyse approximately 48 to 50 h before slaughter so they would be in the follicular phase (FP) of the cycle at the time of slaughter. Analysis of serum and pituitaries showed no differences (P greater than .05) in mean concentrations of serum or pituitary LH and FSH or pituitary LHRH receptor concentration and affinity among FP, CCOD and TCCOD cows. Ovarian follicle wall concentrations of receptors for LH (3.2 +/- .6; 13.0 +/- 2.5; 22.4 +/- 5.1 fmol/mg protein) and FSH (10 +/- 2.6; 43 +/- 7.2; 29 +/- 6.7 fmol/mg protein) were lower (P less than .05) in CCOD cows compared with FP and TCCOD cows, respectively. The same pattern was observed for concentrations of granulosa cell LH and FSH receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
乏情母牛50头、有周期活动母绵羊38头,超排处理引起发情后的4(羊)或7~8(牛)天摘取卵巢进行组织学研究。观察到排卵阻断的5种类型:(1)典型黄体但包含未排的卵母细胞,(2)由未破卵泡黄体化而形成的非典型黄体,(3)纤维性结缔组织团块,其中有散在性黄体细胞(仅见于牛),(4)具备葛拉夫氏泡典型结构的滞留卵泡,(5)颗粒膜已黄体化的滞留卵泡。50头牛中共有滞留卵泡(≥10mm)127个、正常黄体29个、非正常黄体20个。严寒和饥饿可能是卵泡囊肿普遍发生的主要原因。试验牛曾用18甲基炔诺酮药管处理9天。在植入和取出药管时各注射1次(共2次)PMSG的母牛,具有很高的(28/30)早期反应率(出现≥3个卵泡的母牛数/接受处理的母牛数),而仅在去管时1次注射PMSG者,反应微弱(4/20)。试验羊中,只有单一用FSH处理者,在发情当天血清E_2—17β浓度形成峰值(168.1pg/ml),而且正常黄体数亦略高(P<0.1)于用FSH加LH处理者。发情后4天血清P_4浓度则以后者为高(P<0.05)。绵羊滞留卵泡表现为孕酮优势,卵泡液中E_2—17β对P_4的浓度比为1∶46。  相似文献   

9.
The effect of pulsatile infusion of gonadotropin-releasing hormone (GnRH) on follicular function was evaluated in nutritionally induced anovulatory beef cows. After 4 (short; n = 12) or 18 wk (long; n = 12) of anovulation, cows were randomly assigned within anovulatory group to either 2 microg of GnRH treatment or saline (control; i.v.) every hour for 5 d. Ovarian structures were monitored by daily ultrasonography. Growth rate of the largest follicle (P < 0.01) and maximal size of the largest follicle during treatment were greater (P < 0.01) for GnRH vs control cows. At exsanguination after 5 d of GnRH treatment, the size of the second-largest follicle was greater (P < 0.05) in short (i.e., 4 wk) anovulatory cows than in long (i.e., 18 wk) anovulatory cows and the largest follicle tended (P < 0.10) to be larger in long vs short anovulatory cows. Short anovulatory GnRH-treated cows had more small follicles than short anovulatory control cows or long anovulatory GnRH-treated or control cows (anovulation x GnRH; P < 0.10). Follicular fluid (FFL) concentrations of estradiol (P < 0.01) and androstenedione (P < 0.05) were greater in GnRH vs control cows. Concentrations of insulin-like growth factor-I were greater (P < 0.10) in large vs small follicles in cows that were anovulatory for 4 wk, but not in cows that were anovulatory for 18 wk. The amount of insulin-like growth factor-binding protein (IGFBP)-3 in FFL was greater (P < 0.05) in 4- vs 18-wk anovulatory cows. Amounts of IGFBP-2, -4, and -5 were greater (P < 0.001) in FFL of small (< 5 mm) vs large (> or = 5 mm) follicles regardless of treatment. We conclude that pulsatile treatment with GnRH for 5 d stimulates similar growth of the largest follicles in short- and long-term anovulatory beef cows, and that the duration of anovulation is not a major factor that limits follicular growth w hen anovulatory cowsare treated with GnRH. The primary intrafollicular factors associated with increased follicular size were increased concentrations of estradiol, progesterone, and insulin-like growth factor-I,and decreased concentrations of IGFBP-2, -4, and -5. Increased duration of anovulation was associated with decreased concentrations of IGF-I and IGFBP-3 in FFL.  相似文献   

10.
To evaluate the effect of gonadal steroid treatment and thyroidectomy on concentrations of gonadotropins and thyroid-stimulating hormone in the bovine, nonlactating Holstein cows were either thyroidectomized and ovariectomized (THYOVEX; n=6) or ovariectomized only (OVEX; n=4), and subsequently treated with no gonadal steroids (control), estradiol-17β (E2), progesterone (P4), or P4+E2 in a 2 × 4 factorial experiment. Averaged across steroid treatments, baseline concentrations of luteinizing hormone (LH; P < .05) and follicle-stimulating hormone (FSH; P <.10) were higher in THYOVEX cows than in OVEX cows. Pulse frequencies and amplitudes of LH and FSH did not differ between THYOVEX and OVEX cows. Secretion of TSH was pulsatile and all concentrations and pulsatile characteristics of TSH were increased (P < .05) in THYOVEX compared to OVEX cows. Treatment with E2 and P4 decreased (P < .05) baseline concentrations and magnitude of LH pulses, whereas P4+E2 increased (P < .01) pulse frequency of LH and FSH. Amplitude of LH and FSH pulses were not affected by treatment with either steroid. Treatment with P4+E2 decreased (P < .05) baseline concentrations of TSH, whereas pulse frequency, and magnitude and amplitude of TSH pulses were not altered by treatment with steroids. Mean concentrations of LH and FSH were similar during 48 hr after termination of E2 and P4+E2 treatments, but concentrations of TSH were higher (P = .06) after P4+E2 than after E2. Secretion of TSH showed a diurnal variation, with the lowest concentrations in the morning and highest in the afternoon. These results indicate that thyroidectomy influenced secretion of gonadotropins in OVEX cows.  相似文献   

11.
In order to determine the role of follicle-stimulating hormone (FSH) on the resumption of ovarian function in cows early postpartum (PP), bovine follicular fluid (FF) was used to selectively suppress concentrations of FSH. Calves were removed from all cows within 24 hr of birth. Follicular fluid that was treated with charcoal to remove steroids (15 ml; n = 14) or serum (S) from an ovariectomized cow (15 ml, n = 14) was injected i.m. twice daily from days 1 to 10 PP. Blood samples were collected before each injection and frequent samples (every 15 min for 6 hr) taken on days 5 and 10 PP. Eight cows from each group (FF and S) were slaughtered on the morning of day 11 PP and pituitaries and ovaries collected. The remaining cows (n = 6) were observed for estrus. Treatment with FF delayed follicular growth (P less than 0.01), as evidenced by the largest follicle per cow observed at time of slaughter (3.6 +/- 0.42 vs 11.5 +/- 1.77 mm dia; FF vs S). The intervals from parturition to first estrus (P less than 0.11) and to first progesterone rise (25.3 +/- 1.97 vs 18.0 +/- 3.62 d; P less than 0.06) tended to be delayed by treatment with FF vs S. Many of the cows treated with S ovulated by day 10 PP, they were divided retrospectively into those that had ovulated by (n = 9) or after (n = 5) day 10 PP for analysis. Cows treated with FF had lower (P less than 0.05) and less variable (P less than 0.01) serum FSH concentrations while levels of luteinizing hormone (LH) tended (P less than 0.08) to be greater on days 5 and 10 PP. Follicular fluid decreased levels of FSH (P less than 0.001), but not LH (P less than 0.15), in the samples obtained twice daily compared to S-treated cows that did not ovulate by day 10 PP. Anterior pituitaries were dissociated, and cells from each cow were cultured in order to ascertain whether treatment with FF in vivo would affect gonadotropin secretion in vitro. Estradiol-17 beta (E) was incubated with pituitary cells to determine the effect of E on gonadotropin secretion from cells of PP cows, and to ascertain whether treatment with FF in vivo and with E in vitro would interact to affect secretion of FSH and LH in culture. After 2 d of incubation, cells were treated with 10(-9) M E or vehicle (1% ethanol).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Hourly pulses of gonadotropin-releasing hormone (GnRH) or bi-daily injections of estradiol (E2) can increase luteinizing hormone (LH) secretion in ovariectomized, anestrous pony mares. However, the site (pituitary versus hypothalamus) of positive feedback of estradiol on gonadotropin secretion has not been described in mares. Thus, one of our objectives involved investigating the feedback of estradiol on the pituitary. The second objective consisted of determining if hourly pulses of GnRH could re-establish physiological LH and FSH concentrations after pituitary stalk-section (PSS), and the third objective was to describe the declining time trends of LH and FSH secretion after PSS. During summer months, ovariectomized pony mares were divided into three groups: Group 1 (control, n = 2), Group 2 (pulsatile GnRH (25 μg/hr), n = 3), and Group 3 (estradiol (5 mg/12 hr), n = 3). All mares were stalk-sectioned and treatment begun immediately after stalk-section. Blood samples were collected every 30 min for 8 h on the day before surgery (DO) and 5 d post surgery (D5) to facilitate the comparison of gonadotropin levels before and after pituitary stalk-section. Additionally, jugular blood samples were collected every 12 hr beginning the evening of surgery, allowing for evaluation of the gonadotropin secretory time trends over the 10 d of treatment. On Day 10, animals were euthanized to confirm pituitary stalk-section and to submit tissue for messenger RNA analysis (parallel study). Plasma samples were assayed for LH and FSH by RIA. Mean LH secretion decreased from Day 0 to Day 5 in Groups 1 and 3, whereas LH secretion tended (P < 0.08) to decrease in Group 2 mares. On Day 5, LH was higher (P < 0.01) in Group 2 (17.26 ± 3.68 ng/ml; LSMEANS ± SEM), than either Group 1 (2.65 ± 4.64 ng/ml) or group 3 (4.28 ± 3.68 ng/ml). Group 1 did not differ from Group 3 on Day 5 (P < 0.40). Similarly, mean FSH levels decreased in all groups after surgery, yet Group 2 mares had significantly (P < 0.001) higher FSH concentrations (17.66 ± 1.53 ng/ml) than Group 1 or Group 3 (8.34 ± 1.84 and 7.69 ± 1. 63 ng/ml, respectively). Regression analysis of bi-daily LH and FSH levels indicated that the time trends were not parallel. These findings indicate: 1) Pituitary stalk-section lowered LH and FSH to undetectable levels within 5 d after surgery, 2) pulsatile administration of GnRH (25 μg/hr) maintained LH and FSH secretion, although concentrations tended to be lower than on Day 0, and 3) E2 did not stimulate LH or FSH secretion.  相似文献   

13.
Patterns of concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone (P4) and estradiol-17 beta (E2) during an estrous cycle were compared between 15 lactating beef cows 5 to 7 years of age (young) and 15 cows greater than or equal to 12 years of age (old). Length of estrous cycle did not differ between young and old cows (P = .06). No differences due to age were found for LH. Patterns of concentrations of P4 during the first 15 days of the cycle, of FSH during days 6 through 12 and of E2 during the follicular phase differed with age (P less than .05). An earlier (P less than .025) midcycle elevation of FSH was associated with an earlier rise and greater concentration of E2 (P less than .05) during the follicular phase in old than in young cows. Differences in FSH and P4, although subtle, were consistent with an earlier or more advanced follicular development in old cows, leading to greater secretion of E2 from the preovulatory follicle.  相似文献   

14.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

15.
Our objectives were to investigate the phenotypic variation in anterior pituitary responsiveness to GnRH (100 microg, i.v.) of beef cows between d 5 and 8 postpartum, estimate repeatability, and determine the relationship between response classification and duration of the postpartum anovulatory interval (PPI). Brahman x Hereford (F1) cows (n = 137) and primiparous heifers (n = 58) were evaluated. Response classifications (Class) included peak LH (Low, Intermediate, or High; Class I) and time to peak LH (Early, 10 to 30 min or Late, 60 to 120 min; Class II). The independent effects of Class I and II on PPI were determined in 145 of 195 cows through twice-weekly serum samples analyzed for progesterone. For Class I, pituitary responses to GnRH approximated a normal distribution and, by definition, differed (P < .001) in magnitudes of peak LH and area under the curve (AUC). For Class II, 111 and 84 cows exhibited early and late peaks, respectively; mean AUC was greater (P < .05) in cows exhibiting late compared with early peaks. Pretreatment LH (P < .01) and estradiol-17beta (P < .004) influenced responses in one or both response classes. Pluriparous cows had shorter (P < .035) PPI than primiparous cows. Class I did not influence the duration of the PPI; however, in Class II, cows with late peaks exhibited an average PPI that was 8 d shorter (P < .025) than in those with an early peak. To estimate repeatability of pituitary responses, 18 classified cows were subsequently rechallenged with GnRH at d 170 of gestation and at the next postpartum period. Although means for each of these challenges differed (P < .05) throughout in both Classes I and II, the small sample size used to make the estimate failed to yield significant (P > .10) interclass correlations. Nevertheless, overall results provide evidence that variability in individual pituitary responses to GnRH could be targeted as a selection marker to improve reproduction.  相似文献   

16.
Pregnant beef heifers (n = 24) were assigned randomly to four groups and slaughtered at day 1, 15, 30 or 45 postpartum. The day prior to slaughter blood samples were taken from each cow every 15 min for 8 hr. The anterior pituitary gland, preoptic area (POA) and medial basal hypothalamus (HYP) were collected from each cow. Contents of gonadotropin-releasing hormone (GnRH) in extracts of POA and HYP, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in extracts of anterior pituitary were quantified by radioimmunoassay. In the anterior pituitary gland, membrane receptors for GnRH were quantified by a standard curve technique and cytosolic receptors for estradiol were quantified by saturation analysis. Concentrations of LH, FSH and prolactin in serum were quantified by radioimmunoassay. Only one cow of eight had a pulse of LH during the 8 hr bleeding period on day 1 postpartum. This increased to 8 pulses in 6 cows on day 30 postpartum. Contents of GnRH in POA (15.0 +/- 3.2 ng) and HYP (14.0 +/- 2.0 ng) did not change significantly during the postpartum period. Pituitary content of LH was low following parturition (.2 +/- .1 mg/pituitary) and increased significantly through day 30 postpartum (1.2 +/- .1 mg/pituitary). Pituitary content of FSH did not change over the postpartum period. Receptors for both GnRH (.9 +/- .2 pmoles/pituitary) and estradiol (5.0 +/- .9/moles/pituitary) were elevated on day 15 postpartum, possibly increasing the sensitivity of the anterior pituitary gland to these hormones and leading to an increased rate of synthesis of LH that restored pituitary content to normal by day 30 postpartum.  相似文献   

17.
The influence of dietary CP on circulating LH and anterior pituitary and hypothalamic function was examined. In Exp. 1, 28 cows were randomly assigned to four treatment groups: adequate CP (ADQ; .96 kg/d) or deficient CP (DEF; .32 kg/d) beginning at 90, 60 and 30 d before parturition and continued at a 33% increase in feed consumption after parturition. Cows were bled at 15-min intervals for 8 h on d 20, 40 and 60 after parturition. Pituitaries were collected on d 62 to analyze GnRH receptor numbers and gonadotropin content. Frequency of pulsatile LH release increased (P less than .05) from 20 to 60 d in ADQ cows. Basal and mean LH were not affected (P greater than .10) by CP restriction or by days after parturition. Crude protein did not affect pituitary GnRH receptors (P greater than .10), but it did affect pituitary LH content, FSH content and FSH concentration (P less than .05). In Exp. 2, 28 cows were assigned to treatment groups as in Exp. 1. All cows were challenged with GnRH (.22 micrograms/kg BW) at 20, 40 and 60 d after parturition and were bled every 30 min for 6 h. Responsiveness to GnRH increased with increased time after parturition (P less than .07). Deficient CP decreased GnRH-induced LH release (P less than .05). In Exp. 3, 12 cows were randomly assigned to ADQ or DEF CP beginning 120 d before parturition. All cows received 1 mg estradiol-17 beta (E2) on d 19, 39 and 59 after parturition and were bled every 30 min for 14 h beginning 14 h following E2. Response to E2 was unaffected by CP restriction (P greater than .10), whereas time to E2-induced LH peak decreased as time after parturition increased in ADQ cows (P less than .05). Results suggest that delayed return to estrus in CP-deficient postpartum beef cows might be due to reduced gonadotropin release from the anterior pituitary and decreased anterior pituitary responsiveness to GnRH.  相似文献   

18.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2𝛂 (PG) or progesterone (P4) and oestradiol benzoate (ODB).

METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or >2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 𝛍g of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 𝛍g of gonadorelin. Cows were artificially inseminated 16–24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35–40 days after the initial insemination and twice again at 6–8 week intervals thereafter.

RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21days;p>0.1).

CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

19.
The objective of this study was to test the hypothesis that supra-basal concentrations of progesterone during the follicular phase are associated with the development of follicular cysts. Twenty-five non-lactating dairy cows were used in the study, which was performed over five identical replicate trials. Luteolysis was induced during the mid-luteal phase. Transrectal ultrasonography was performed daily to determine the occurrence/timing of ovulation. Plasma samples were collected for progesterone, oestradiol and luteinizing hormone (LH) analysis. Three cows failed to ovulate (cystic anovulatory) but did ovulate in a subsequent replicate (cystic ovulatory). Eight cows from the appropriate replicates were used as control cows (normal group). Follicular growth patterns and plasma oestradiol concentrations were similar between the three groups. However, the plasma progesterone concentrations during the follicular phase were twofold higher in the cystic anovulatory group (P < 0.01). Furthermore, no LH surge was detected in these animals. While LH pulse amplitude was similar between groups, LH pulse frequency in the cystic anovulatory group was attenuated (P < 0.05). In conclusion, the formation of follicular cysts were preceded by elevated plasma progesterone concentrations and the suppression of the LH surge.  相似文献   

20.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2 (PG) or progesterone (P4) and oestradiol benzoate (ODB). METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or 2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 mug of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 mug of gonadorelin. Cows were artificially inseminated 16-24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35-40 days after the initial insemination and twice again at 6-8 week intervals thereafter. RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21 days; p>0.1). CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号