首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Bovine herpesvirus 1 (BHV-1) attached poorly and penetrated into a mouse cell line, BALB 3T3/A31, but a recombinant BHV-1/TF7-6, which expresses pseudorabies virus (PrV) gB and gC genes, did attach and penetrated into cells more efficiently. In this study the gene green fluorescent protein (GFP) has been integrated into genome of BHV-1/TF7-6 and its parental line of BHV-1. When the mouse mesenteries were incubated in vitro and infected with BHV-1/TF7-6/GFP, strong fluorescence was observed while BHV-1/GFP infection hardly demonstrated fluorescence, suggesting that BHV-1 recombinant expressing PrV gB and gC can infect mouse tissue cells more efficiently than the parental BHV-1 does. When BALB/c mice were inoculated with purified BHV-1/TF7-6 or its parental BHV-1, the former induced lower level of anti-BHV-1 immunoglobulin G (IgG) than the latter did. When sub-classes of anti-BHV-1 IgG were analyzed, it was found that mice immunized with BHV-1/TF7-6 or the parental BHV-1 demonstrated the same level of IgG2a. Since anti-BHV-1 IgG1 level was lower in mice inoculated with BHV-1/TF7-6, the IgG2a:IgG1 ratio was higher in BHV-1/TF7-6 inoculated mice than in the parental BHV-1 inoculated ones. These results indicate that BHV-1/TF7-6 induces type 1 predominant immune to BALB/c mice.  相似文献   

2.
Mouse BALB/3T3-A31-1-1 (A31) cells are non-permissive to bovine herpes virus-1 (BHV-1) but permissive to pseudorabies virus (PrV). The promoter activity of the immediate early gene of BHV-1 (BICP4) was very weak when compared with that of PrV in A31 cells. Infectious BHV-1 genomic DNA co-transfected into A31 cells with plasmids expressing BICP4 and BICP0 by a strong promoter failed to yield any progeny virus. Growth of BHV-1 in non-permissible A31 cells is restricted in many phases of the growth. The fact that expression of BICP4 and/or BICP0 in A31 cells does not improve the yield of progeny virus from infectious BHV-1 genomic DNA suggests that some more growth restrictions exist beyond the expression of BHV-1 immediate early proteins.  相似文献   

3.
Although DNA vaccines have several advantages over conventional vaccines, antibody production and protection are often not adequate, particularly in single plasmid vaccine formulations. Here we assessed the potential for a combined vaccine based on plasmids encoding the membrane-anchored or secreted forms of bovine herpesvirus type 1 (BHV-1) glycoprotein B and D (gB and gD) to induce neutralizing and cell mediated immune responses in mice. Animals were injected by intramuscular, subcutaneous and intranasal routes. Mice immunized with the combined vaccine containing the secreted forms of BHV-1 glycoproteins developed higher titers of anti-BHV-1 neutralizing antibodies, compared to wild type gB/gD combined plasmids and to single plasmid injected groups. Cellular immunity was also developed in mice immunized with combined vaccines, whereas low or no response were observed in single plasmid injected animals. The data suggest the potential use of this combined vaccine in in vivo trials of calves, in order to evaluate its protective efficacy.  相似文献   

4.
The glycoprotein gB of pseudorabies virus (PrV) was expressed in various mammalian cells by a recombinant baculovirus carrying the PrV gB gene under the control of the CAG promoter. When the recombinant baculovirus was inoculated into the stable porcine kidney cell line CPK, expression of PrV gB was detected by immunofluorescent antibody analysis and a 155 kDa of protein, which has the same molecular mass as the native PrV gB, was detected by Western blotting. High levels of expression of PrV gB were observed in BHK-21, HmLu-1 and SK-H cell lines. Furthermore, anti-PrV gB-specific antibodies against PrV gB protein were detected by the enzyme-linked immunosorbent assay in mice inoculated the recombinant baculovirus. The recombinant baculovirus containing the PrV glycoprotein gB gene under the CAG promoter could be a candidate for a pseudorabies vaccine.  相似文献   

5.
OBJECTIVE: To determine whether a combination viral vaccine containing modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with a recent field isolate of BHV-1. DESIGN: Randomized controlled trial. ANIMALS: Sixty 4- to 6-month-old beef calves. PROCEDURE: Calves were inoculated with a placebo 42 and 20 days prior to challenge (group 1; n = 10) or with the combination vaccine 42 and 20 days prior to challenge (group 2; 10), 146 and 126 days prior to challenge (group 3; 10), 117 and 96 days prior to challenge (group 4; 10), 86 and 65 days prior to challenge (group 5; 10), or 126 days prior to challenge (group 6; 10). All calves were challenged with BHV-1 via aerosol. Clinical signs, immune responses, and nasal shedding of virus were monitored for 14 days after challenge. RESULTS: Vaccination elicited increases in BHV-1-specific IgG antibody titers. Challenge with BHV-1 resulted in mild respiratory tract disease in all groups, but vaccinated calves had less severe signs of clinical disease. Extent and duration of nasal BHV-1 shedding following challenge was significantly lower in vaccinated calves than in control calves. In calves that received 2 doses of the vaccine, the degree of protection varied with the interval between the last vaccination and challenge, as evidenced by increases in risk of clinical signs and extent and duration of viral shedding. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that this combination vaccine provided protection from infection with virulent BHV-1 and significantly reduced nasal shedding of the virus for at least 126 days after vaccination.  相似文献   

6.
Twenty-four Belgian field isolates of bovine herpesvirus 4 (BHV-4), together with four reference strains were compared by radio-immunoprecipitation and western blotting using a polyvalent antiserum and monoclonal antibodies raised against major glycoproteins. Most of these strains showed the same protein profile as the European reference strain Movar 33/63. For two strains the molecular weight of gp 6, p (gp 10/gp 17) and gp 10 were the same as those of the American reference strain DN 599. No relationship could be established between the protein profiles and origin of the isolates or with the restriction patterns. This study provides a view of the molecular weight variations of the major BHV-4 glycoproteins among field isolates.  相似文献   

7.
A subunit vaccine in the form of immunostimulating complex (iscom) was prepared to contain the envelope glycoproteins of bovine herpesvirus type 1 (BHV-1). This iscom preparation was tested in a vaccination experiment on 4-month-old calves seronegative to BHV-1. In this experiment, four groups with three animals per group were used. Two groups were vaccinated with the iscom preparation twice, four weeks apart, one group with 50 micrograms and the other with 100 micrograms per calf. The third group received a commercial inactivated whole-virus vaccine applying the same vaccination program. The fourth group served as control. Two weeks after the second vaccination, all the animals were challenge-infected intranasally with a virulent BHV-1 strain and four days later with a virulent Pasteurella multocida--this in order to mimic hard field conditions. When exposed to challenge infection, all the animals vaccinated with the iscom were fully protected, i.e., no virus could be recovered from their nasal secretions and no clinical symptoms were recorded. In contrast, the animals vaccinated with the commercial vaccine, responded to challenge with moderate fever and loss of appetite, and virus was isolated from the nasal secretions. The animals in the control group developed severe clinical symptoms. In the sera of iscom-vaccinated animals, the virus neutralization titers reached levels of 1/3500 or higher.  相似文献   

8.
It should be established, whether animals vaccinated intramuscularly (IM) with a live Bovine herpesvirus type 1 (BHV-1) marker vaccine become viremic and/or excrete vaccine virus with nasal discharge. Five cattle, seronegative for BHV-1, were vaccinated with an overdose of the vaccine (Bovilis IBR marker live) via the IM route. Nasal swabs and blood samples were taken at regular intervals and tested for BHV-1 in a virus infectivity assay. In addition, a polymerase chain reaction (PCR) specific for BHV-1 DNA was performed on the blood samples. BHV-1 neutralizing antibody titres were determined in the sera taken prior to the vaccination and four weeks after immunisation. AIl animals were successfully vaccinated as judged by the development of BHV-1 neutralising antibodies. However, all nasal swab samples were tested negative for vaccine virus, and all blood samples were found negative for BHV-1 vaccine virus and BHV-1 specific DNA. From these data it can be concluded that the vaccine virus was not excreted with nasal discharge after IM vaccination and that the vaccinated animals did not have a detectable viremia. Therefore, it is recommended to apply the tested BHV-1 marker live vaccine by the IM route in situations where it is undesirable that the vaccine virus is excreted.  相似文献   

9.
A DNA vaccine expressing glycoprotein C (gC) of bovine herpesvirus-1 (BHV-1) was evaluated for inducing immunity in bovines. The plasmid encoding gC of BHV-1 was injected six times intramuscularly or intradermally into calves at monthly intervals. After immunization by both routes neutralizing antibody and lymphoproliferative responses developed. The responses in the intradermally immunized calves were better than those in calves immunized intramuscularly. However, the intradermal (i.d.) route was found to be less efficacious when protection against BHV-1 challenge was compared. Following intranasal BHV-1 challenge, all immunized calves demonstrated a rise in IgG antibody titre on day 3, indicating an anamnestic response. The control non-immunized calf developed a neutralizing antibody response on day 7 post-challenge. The immunized calves showed a slight rise in temperature and mild clinical symptoms after challenge. The intramuscularly immunized calves showed earlier clearance of challenge virus compared with intradermally immunized calves. These results indicate that DNA immunization with gC could induce neutralizing antibody and lymphoproliferative responses with BHV-1 responsive memory B cells in bovines. However, the immunity developed was not sufficient to protect calves completely from BHV-1 challenge.  相似文献   

10.
对以伪狂犬病病毒鄂A株为亲本毒株构建的TK和gG双基因缺失突变株(PrV HB-98株)的增殖能力、安全性、毒力稳定性和免疫原性进行了测定。结果表明,PrV HB-98株在BHK-21细胞上的增殖滴度为10^7.0 TCID50/0.1mL以上,与亲本毒株相当,但高于Bartha株;与PrV鄂A株相比,病毒量为10^7.0TCID50的PrV HB-98株不引起BALB/c小鼠的死亡,毒力也低于Bartha株;将PrV HB-98株在PK-15细胞连续培养25代和在猪体内上连续继代5次,各代次突变株TK基因和LacZ基因能被稳定扩增,未出现毒力回复现象.表明该毒株具有良好的遗传稳定性;以10^5.0、10^6.0、10^7.0TCID50等3个不同剂量的PrV HB-98株接种于妊娠50~60d母猪和1日龄仔猪,母猪均能正常产仔.仔猪也未出现任何临床症状,证明该毒株有较好的安全性。另外,以10^5.0TCID50的PrV HB-98株接种于妊娠50~60d母猪和1日龄仔猪,分别于接种后28d和20d,用10^7.0TCID50 PrV鄂A强毒进行攻击.结果免疫猪都能抵抗强毒的攻击.获得保护,表明该毒株具有很强的免疫原性。综合上述结果表明,PrV HB-98株可以作为候选毒株.用于伪狂犬病基因工程疫苗的研制。  相似文献   

11.
This study demonstrated that a multivalent vaccine containing modified-live bovine herpesvirus type 1 (BHV-1) protected pregnant heifers and their fetuses against virulent BHV-1 challenge exposure at 365 days after vaccination. The percentage of abortions or fetal deaths caused by BHV-1 was significantly higher in control heifers (10 of 10 [100.0%]) than BHV-1-vaccinated heifers (three of 19 [15.8%]).  相似文献   

12.
Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  相似文献   

13.
Eight separate, but related experiments, were carried out in which groups of six calves were vaccinated with one of eight commercial vaccines. In each experiment the vaccinated calves were subsequently exposed to three calves infected with virulent bovine herpesvirus-1 (BHV-1). In each experiment, all infected donor calves developed a typical severe infectious bovine rhinotracheitis (IBR) infection and excreted virus in their nasal secretions of up to 10(8.00) TCID50/0.1 ml. One live BHV-1 gE-negative vaccine (A) and three modified live vaccines (B, C, D), administered intranasally, all protected against clinical disease. The calves vaccinated with one vaccine (C) also did not excrete virus in the nasal secretions, whereas the calves protected by vaccines A, B and D excreted virus in their nasal secretions but at low titres (10(0.66)-10(1.24) TCID50/0.1 ml). A fourth modified live vaccine (E), given intramuscularly, failed to prevent mild clinical disease in the calves which also excreted virus in the nasal secretions at titre of 10(1.00) TCID50/0.1 ml. An analogous result was given by the calves vaccinated with either of the two inactivated vaccines (F and G) or with a BHV-1 subunit vaccine (H). All calves developed mild clinical signs and excreted virus at titres of 10(2.20)-10(3.12) TCID50/0.1 ml. Calves vaccinated with C vaccine were subsequently given dexamethasone, following which virus was recovered from their nasal secretions. The virus isolates did not cause disease when calves were infected and appeared to be closely related to the vaccine strain.  相似文献   

14.
OBJECTIVE: To evaluate the efficacy of an inactivated bovine herpesvirus-1 (BHV-1) vaccine to protect against BHV-1 challenge-induced abortion and stillbirth. DESIGN: Prospective study. ANIMALS: 35 beef heifers. PROCEDURES: Before breeding, heifers were vaccinated with a commercially available BHV-1 inactivated vaccine SC or IM. The estrous cycle was then synchronized, and heifers were artificially inseminated 30 to 60 days after vaccination. Heifers (n = 21) were challenge inoculated IV at approximately 180 days of gestation with virulent BHV-1. Fourteen control heifers were not vaccinated. Clinical signs of BHV-1 infection were monitored for 10 days following challenge; serologic status and occurrence of abortion or stillbirth were evaluated until time of calving. RESULTS: 18 of 21 (85.7%) heifers that received vaccine were protected from abortion following challenge, whereas all 14 control heifers aborted. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that an inactivated BHV-1 vaccine can protect against abortion resulting from a substantial challenge infection, with efficacy similar to that of modified-live BHV-1 vaccines.  相似文献   

15.
Bovine herpesvirus type 1 (BHV-1) envelope protein U(L)49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. Earlier, we have constructed a BHV-1U(L)49.5Δ30-32 CT-null virus and determined that in the infected cells, TAP inhibition and MHC-I down regulation properties of the virus are abolished. In this study, we compared the pathogenicity and immune responses in calves infected with BHV-1U(L)49.5Δ30-32 CT-null and BHV-1 wt viruses. Following primary infection, both BHV-1 wt and BHV-1U(L)49.5Δ30-32 CT-null virus replicated in the nasal epithelium with very similar yields. BHV-1 antigen-specific CD8+ T cell proliferation as well as CD8+ T cell cytotoxicity in calves infected with the BHV-1U(L)49.5Δ30-32 CT-null virus peaked by 7 dpi (P<0.05) which is 7 days earlier than that of BHV-1 wt-infected calves. Further, virus neutralizing antibody (VN Ab) titers and IFN-γ producing peripheral blood mononuclear cells (PBMCs) in the U(L)49.5 mutant virus-infected calves, also peaked 7 days (IFN-γ; P<0.05) and 14 days (VN Ab; P<0.05) earlier, respectively. Therefore, relative to wt in the BHV-1U(L)49.5 mutant virus-infected calves, primary neutralizing antibody and cellular immune responses were induced significantly more rapidly.  相似文献   

16.
Susceptible calves were administered modified live virus (MLV) vaccines containing bovine herpesvirus-1 (BHV1) and bovine viral diarrhoea type 1 (BVDV1a) strains intramuscularly, with one vaccine containing both MLV and inactivated BHV-1 and inactivated BVDV1a. There was no evidence of transmission of vaccine (BHV-1 and BVDV1a) strains to susceptible non-vaccinated controls commingled with vaccinates. No vaccinates had detectable BHV-1 in peripheral blood leucocytes (PBL) after vaccination. Each of three vaccines containing an MLV BVDV1a strain caused a transient BVDV vaccine induced viremia in PBL after vaccination, which was cleared as the calves developed serum BVDV1 antibodies. The vaccine containing both MLV and inactivated BHV-1 induced serum BHV-1 antibodies more rapid than MLV BHV-1 vaccine. Two doses of MLV BHV-1 (days 0 and 28) in some cases induced serum BHV-1 antibodies to higher levels and greater duration than one dose.  相似文献   

17.
To assess the correlation between the nature of immunity induced by different types of immunogens and the establishment of latent infection by wild-type pseudorabies virus (PrV), we used a murine model immunized with different immunogens, the PrV modified live vaccine (MLV), inactivated vaccine (IAV), and commercial oil-adjuvant subunit vaccine (OSV), via either intranasal (i.n.) or intramuscular (i.m.) route. Both MLV and IAV induced a different nature of immunity biased to Th1- and Th2-type, respectively, as judged by the ratio of PrV-specific IgG isotypes (IgG2a/IgG1) and the profile of cytokine IL-2, IL-4, and IFN-gamma production. In contrast, the OSV induced a lower isotype IgG2a to IgG1 ratio and higher level of IL-2 production. The MLV (inducing Th1-type) provided more effective protection against a virulent wild-type PrV challenge than IAV and OSV (inducing Th2- and mixed type, respectively). In addition, the MLV impeded the establishment of a latent infection with wild-type PrV, and the decrease in the PrV latency load by immunization with the MLV appeared to be mediated by the immune T-cells. These results demonstrate the substantial role of the immune responses driven by preceding vaccination in modulating the establishment of PrV latency caused by the post-infection of a field virus.  相似文献   

18.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

19.
Li J  Han Q  Gong P  Yang T  Ren B  Li S  Zhang X 《Veterinary parasitology》2012,184(2-4):154-160
Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. The rhomboid proteins which are responsible for adhesion and invasion of host cells have been suggested as vaccine candidates against toxoplasmosis. A DNA vaccine (pVAX-ROM1) encoding T. gondii rhomboid protein 1 (TgROM1) gene was constructed and the immune response and protective efficacy of this vaccine against lethal challenge in BALB/c mice were evaluated. The results indicated that specific antibody and lymphocyte proliferative responses were elicited in mice receiving pVAX-ROM1. The production levels of IFN-γ, IL-2, IL-4, and IL-10, as well as the percentage of CD4(+) cells in mice vaccinated with pVAX-ROM1 were significantly increased respectively, compared to controls receiving either pVAX1 alone or PBS. After lethal challenge, the mice immunized with pVAX-ROM1 showed an increased survival time compared with the mice in the controls. Our data suggested that a DNA vaccine pVAX-ROM1 encoding T. gondii rhomboid protein 1 triggered strong humoral and cellular responses, and prolonged survival time against T. gondii infection in BALB/c mice.  相似文献   

20.
A panel of seven monoclonal antibodies (MAbs) directed against the bovine herpesvirus-1 (BHV-1) glycoprotein E (gE) was obtained. For that purpose, mice were either tolerized to BHV-1 gE-negative virus and then immunized with wild type BHV-1 or immunized with plasmid DNA expressing the gE and gI glycoproteins. The MAbs were characterized by their reactivity with the gE protein or the gE/gI complex and by competition experiments. Results showed that the MAbs were directed against three antigenic domains, two located on the gE glycoprotein and one on the gE/gI complex. Blocking experiments were performed with sera from experimentally vaccinated and infected cattle. A competition was observed between gE-positive bovine sera and six of the seven MAbs. The bovine sera thus recognized two of the three antigenic sites. Field sera were then tested in blocking enzyme-linked immunosorbent assay using one horseradish peroxidase-conjugated MAb. A specificity of 98.2% and a sensitivity of 98.2% compared to the commercially available test were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号