首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of organosulfur compounds was determined in selected garlic cultivars grown at four locations in Andalusia, Spain. The organosulfur compounds studied were three γ-glutamyl peptides, namely, γ-l-glutamyl-S-(2-propenyl)-l-cysteine (GSAC), γ-l-glutamyl-S-(trans-1-propenyl)-l-cysteine (GSPC), and γ-l-glutamyl-S-methyl-l-cysteine (GSMC), and four cysteine sulfoxides (alliin, isoalliin, methiin, and cycloalliin). There was a significant effect of the location, cultivar, and garlic ecotype on individual organosulfur compound contents. Purple-type cultivars showed on average the highest contents of GSMC, GSAC, alliin, and methiin but the lowest isoalliin content. The impact of genotype was relatively high for GSAC, whereas this factor hardly contributed to the total variability in alliin and isoalliin content. Planting date had a significant effect on the content of alliin and isoalliin. Discriminant analysis evidenced the ability of organosulfur compounds to distinguish among garlic bulbs from different locations or ecotypes with 81 or 86% accuracy, respectively.  相似文献   

2.
The properties of garlic (Allium sativum L.) are attributed to organosulfur compounds. Although these compounds change during cultivation and storage, there is no report of their simultaneous analysis. Here, a newly developed analytical method with a rapid and simple sample preparation to determine four sulfoxides and three gamma-glutamyl peptides in garlic is reported. All garlic samples were simply extracted with 90% methanol solution containing 0.01 N hydrochloric acid and prepared for analysis. Alliin, isoalliin, methiin, cycloalliin, and gamma-l-glutamyl-S-methyl-l-cysteine were determined by normal-phase HPLC using an aminopropyl-bonded column. gamma-l-Glutamyl-S-(2-propenyl)-l-cysteine and gamma-l-glutamyl-S-(trans-1-propenyl)-l-cysteine were separated on an octadecylsilane column. The overall recoveries were 97.1-102.3%, and the relative standard deviation values of intra- and interday precision were lower than 2.6 and 4.6%, respectively. This newly developed method offers some advantages over the currently accepted techniques including specificity, speed, and ease of use and would be useful for chemical and biological studies of garlic and its preparations.  相似文献   

3.
It was established that storage at low temperature (less than 10 degrees C) was required for garlic greening occurring either during processing or in the course of "Laba" garlic preparation while storage at high temperature (higher than 20 degrees C) inhibited its occurrence. However, the reason for this observation is unclear. To obtain insights into a tie connected between storage temperature and garlic greening, it was detected if the gamma-glutamyl transpeptidase (GGT) activity correlated with garlic greening because the activity of this enzyme is very sensitive to storage temperature. Results showed that garlic puree (which was prepared from fresh garlic) turned green upon addition of GGT but the color of garlic puree remained unchanged when either water or heat-treated GGT (which has no activity due to heat treatment) was used, a result giving a positive answer to the above proposal. Subsequently, to further clarify the relationship between the GGT activity and garlic greening, the GGT activity, the degree of garlic greening, and the concentration of total thiosulfinates in garlic bulbs were determined respectively after the garlic bulbs had been stored at 4 degrees C for up to 59 days followed by storage at 35 degrees C for up to 22 days. It was found that cold storage facilitated the GGT activity whereas warm storage inhibited the activity of this enzyme, just like the effect of storage temperature on greening, indicating that the increase of GGT activity could be a direct factor resulting in garlic greening. Consistent with this conclusion, the concentration of total thiosulfinates (the color developers) in garlic purees likewise exhibited a reversible change by moving garlic bulbs from one low storage temperature to a higher one; namely, it increased with increasing storage time during storage at 4 degrees C while decreasing as storage time increased during storage at 35 degrees C. The present study provided direct evidence that the GGT is involved in garlic greening.  相似文献   

4.
The influence of processing, with and without fermentation, on the contents of organosulfur compounds, namely, γ-glutamyl peptides, S-alk(en)yl-L-cysteine sulfoxides (ACSOs), and S-allyl-L-cysteine (SAC), in pickled blanched garlic was evaluated. For each processing type, the effect of the preservation method and storage time was also analyzed. Blanching in hot water (90 °C for 5 min) hardly affected the individual organosulfur compound content. The fermentation and packing steps negatively affected the levels of all compounds except for SAC. The content of this compound increased during storage at room temperature whereas γ-glutamyl peptides and ACSOs were degraded to various extents. The pasteurization treatment itself had no significant effect on the concentrations of organosulfur compounds. Use of the corresponding fermentation brine in the case of the fermented product in conjunction with refrigerated storage was found to be the best method to preserve the levels of organosulfur compounds in pickled garlic stored for up to one year.  相似文献   

5.
The most important active compound in garlic is alliin. Sulfur (S) fertilization was shown to significantly increase the alliin concentration in garlic cloves, while high nitrogen (N) levels had an adverse effect. The effect of graded N and S application on the storage life of garlic has been paid little attention so far. A bifactorial field trial with 4 levels of N and S was conducted in a randomized block design. At harvest, 40 bulbs per treatment were stored under terms comparable to the storage conditions in average households (20 °C, dry, and dim) for 83 days. Every 3 weeks, samples were analyzed for their alliin and water content. The alliin concentration in peeled garlic cloves increased during storage from on average 9.2 mg g(-1) dry weight at harvest to 21.4 mg g(-1) dry weight after 83 days of storage. S fertilization increased the alliin concentration by a factor of 2.3 from 11.4 mg g(-1) in the control treatment to 26.6 mg g(-1) dry weight at the highest S level of 45 kg ha(-1) after 83 days of storage. N fertilization decreased by a trend of the alliin content. Fertilizer rates had only a minor influence on water losses from bulbs at short-term storage. After 83 days of storage, water losses were by trend lower at higher S levels, and this relationship proved to be significant when no N was applied. Best quality in terms of high alliin contents was obtained during the entire storage time at an S level of at minimum 30 kg ha(-1) S if no N was applied. The results show that the physiological S demand of 15 kg ha(-1) S for optimum yield is lower than the S requirement of 30 kg ha(-1) S for a longer storage life.  相似文献   

6.
Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of tonoplast by treatment with monocarboxylates such as acetic acid may be the main reason for the greening of garlic.  相似文献   

7.
Cycloalliin, an organosulfur compound found in garlic and onion, has been reported to exert several biological activities and also to remain stable during storage and processing. In this study, we investigated the pharmacokinetics of cycloalliin in rats after intravenous or oral administration. Cycloalliin and its metabolite, (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid, in plasma, urine, feces, and organs was determined by a validated liquid chromatography-mass spectrometry method. When administered intravenously at 50 mg/kg, cycloalliin was rapidly eliminated from blood and excreted into urine, and its total recovery in urine was 97.8% +/- 1.3% in 48 h. After oral administration, cycloalliin appeared rapidly in plasma, with a tmax of 0.47 +/- 0.03 h at 25 mg/kg and 0.67 +/- 0.14 h at 50 mg/kg. Orally administered cycloalliin was distributed in heart, lung, liver, spleen, and especially kidney. The Cmax and AUC0-inf values of cycloalliin at 50 mg/kg were approximately 5 times those at 25 mg/kg. When administered orally at 50 mg/kg, cycloalliin was excreted into urine (17.6% +/- 4.2%) but not feces. However, the total fecal excretion of (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid was 67.3% +/- 5.9% (value corrected for cycloalliin equivalents). In addition, no (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid was detected in plasma (<0.1 microg/mL), and negligible amounts (1.0% +/- 0.3%) were excreted into urine. In in vitro experiments, cycloalliin was reduced to (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid during anaerobic incubation with cecal contents of rats. These data indicated that the low bioavailability (3.73% and 9.65% at 25 and 50 mg/kg, respectively) of cycloalliin was due mainly to reduction to (3R,5S)-5-methyl-1,4-thiazane-3-carboxylic acid by the intestinal flora and also poor absorption in the upper gastrointestinal tract. These findings are helpful for understanding the biological effects of cycloalliin.  相似文献   

8.
Precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing, respectively, have been studied. It has been confirmed that the formations of both pigments are of very similar natures, with (E)-S-(1-propenyl)cysteine sulfoxide (isoalliin) serving as the primary precursor. Upon disruption of the tissue, isoalliin and other S-alk(en)ylcysteine sulfoxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinates [CH3CH=CHS(O)SR; R = methyl, allyl, propyl, 1-propenyl] among others. The latter compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the propyl, 1-propenyl, and methyl derivatives form pink, pink-red, and magenta compounds, those containing the allyl group give rise to blue products after reacting with glycine at pH 5.0. The role of other thiosulfinates [RS(O)SR'] (R, R' = methyl, allyl, propyl) and (Z)-thiopropanal S-oxide (the onion lachrymatory principle) in the formation of the pigments is also discussed.  相似文献   

9.
Sulfur-containing compounds of ramson (Allium ursinum L.) are responsible for its traditional use in terms of culinary and medicinal purposes. Leaves and bulbs were investigated for their contents of cysteine sulfoxides (volatile precursors) as well as volatile compounds released from minced plant material. Plants were analyzed during the whole vegetation period, focused on the months from March to June. Additionally, within the dormancy period bulbs were analyzed again and alliinase activity was determined. The pattern of volatile compounds was analyzed both by SPME/GC-MS and by SDE/GC-MS. Compared to each other, SDE exhibited a wider spectrum of detectable volatile compounds. The quality and quantity of volatiles significantly depended on the time of harvest. The highest amounts of volatile precursors can be gained in March and April, shortly before flowering time (up to 0.4% of total cysteine sulfoxides). The main cysteine sulfoxides were alliin and isoalliin. It has been found that alliinase of A. ursinum exhibited properties similar to those of alliinase of garlic (Allium sativum L.), but differing in terms of substrate specificity.  相似文献   

10.
While green discoloration during garlic processing is of a major concern, this greening is desirable and required for the traditional homemade Chinese "Laba" garlic. To obtain insights into the mechanism of color formation, simulation of the greening of "Laba" garlic was carried out in the laboratory by soaking aged garlic in 5% (v/v, pH 2.33) acetic acid solution. After 2 days, the garlic cloves turned green. Up to 4 days, pigment(s) diffused from garlic cloves to the pickling solution. The solution exhibits two maximal absorbances at approximately 440 and approximately 590 nm, corresponding to yellow and blue species, respectively, the combination of which creates the green coloration. With increasing time from 4 to 25 days, the concentration of both yellow and blue species increases at nearly the same rate, while after 25 days, the concentration of the yellow species increases faster than that of the blue species. Interestingly, most thiosulfinates ( approximately 85%) in garlic cloves were converted within 4 days, suggesting that thiosulfinate conversion is proportional to the formation of the pigments. Consistent with this conclusion, alliinase and acetic acid were required for the color formation. UV-vis spectral measurements and pH results suggest that the color formation occurs by two kinds of processes: one enzymatic and the other nonenzymatic. Low pH (2.0-3.0) favors nonenzymatic reactions, while high pH (6.0 or above) is conducive to enzymatic reactions. Thus, the ideal pH for the entire process of garlic greening is between 4.0 and 5.0, which is a compromise of the optimal pH of both the enzymatic and nonenzymatic reactions.  相似文献   

11.
为了满足大蒜在栽植过程中保持蒜瓣鳞芽朝上垂直入土且蒜瓣弓背面朝向一致的农艺要求,该文根据蒜瓣的外形特征,设计了一种大蒜播种机种植机构并对该机构进行详细的理论分析,运用Solidworks软件对该机构进行建模并通过3D打印机打印出零件,然后组建试验台对该种植机构进行试验。试验数据显示采用该种植机构不但可以确保大蒜弓背面朝向一致,而且播种机前进速度的变化对蒜瓣垂直度的影响较小。该文为大蒜种植机械种植机构的设计提供了一种设计方法,为研究大蒜播种机和同类机具提供了参考。  相似文献   

12.
In this work a study of critical storage temperatures on pigment degradation of green beans (Phaseolus vulgaris, cvs. Perona and Boby) was conducted. In this way, green beans kept better quality at 4 degrees C than either 8 or 12 degrees C, maintaining a bright green color and good texture. Nevertheless, temperatures of 4 degrees C induced chilling injury (CI) after eight days of storage, which became evident when the pods were transferred to 20 degrees C. Cold storage temperatures, 12, 8, and 4 degrees C, produced different changes on the green beans chlorophyll profile. Green beans of both cultivars, Perona and Boby, stored at 4 and 12 degrees C showed a continuous degradation of chlorophyll pigments during storage, while samples stored at 8 degrees C showed an increase of chlorophyll content at the first 15 days. Carotenoid pigments also suffered different changes during cold storage. Perona was the green beans cultivar which maintained the higher level of lutein, mainly when samples were stored at the most suitable temperature (8 degrees C).  相似文献   

13.
Recent research suggests that blueberries are rich in total polyphenols and total anthocyanins. Phenolic compounds are highly unstable and may be lost during processing, particularly when heat treatment is involved. There is no systematic study available providing information on the fate of phenolic compounds during storage and how that affects their biological activity. We provide a systematic evaluation of the changes observed in total polyphenols (TPP), total anthocyanins (TACY), Trolox equivalent antioxidant capacity (TEAC), phenolic acids, and individual anthocyanins of blueberry extract stored in glass bottles and the ability of blueberry extract to inhibit cell proliferation. The extract was stored at different temperatures (-20 +/- 1, 6 +/- 1, 23 +/- 1, and 35 +/- 1 degrees C). Two cultivars, Tifblue and Powderblue, were chosen for the study. The recoveries of TPP, TACY, and TEAC in blueberry extract after pressing and heating were approximately 25, approximately 29, and approximately 69%, respectively, for both cultivars. The recovery of gallic acid, catechin, and quercetin was approximately 25%. Ferulic acid was not detected in the final extract in both Tifblue and Powderblue cultivars. The recovery of peonidin, malvidin, and cyanidin glycosides was approximately 20% in the final extract in both cultivars. Losses due to storage were less when compared with initial losses due to processing. At -20 degrees C, no statistically significant loss of TPP, TACY, and TEAC was observed up to 30 days (P < 0.05). At 6 degrees C storage, there was a significant loss observed from 15 to 30 days. Similar results were obtained at 23 and 35 degrees C (P < 0.05). There was retention of more than 40% of ellagic and quercetin after 60 days at 35 +/- 1 degrees C. Anthocyanins were not detected after 60 days of storage at 35 +/- 1 degrees C. Significant retention (P < 0.05) was obtained for malvidin (42.8 and 25.8%) and peonidin (74.0 and 79.5%) after 60 days of storage at 23 +/- 1 degrees C in glass bottles for Tifblue and Powderblue, respectively, when compared with other individual anthocyanins. A linear relationship was observed between TEAC values and total polyphenols or total anthocyanins. A cell viability assay was performed using HT-29 cancer cell lines and anthocyanins extracted from 30, 60, and 90 days of stored extract at 6 +/- 1 and 23 +/- 1 degrees C. A significant cell proliferation inhibition percentage was observed in 30 days, although this was reduced significantly after 30-90 days. These results suggest that heating and storage conditions significantly affect the phenolic compounds and their biological activities. Frozen and low temperature storage are suggested for blueberry extract in order to retain the bioactive components.  相似文献   

14.
Length of sample storage can become significant in sensory studies due to panel fatigue limitations and samples needed for a reasonable expectation of finding significant differences. In roasted peanut sensory studies samples are stored between -10 and -23 degrees C to prevent or retard changes. Studies of up to 13 months' duration have examined stability and slow-rate sensory changes. Sweet taste was relatively stable, whereas bitter and tongue burn attributes increased slightly. Stale taste increased, suggesting lipid oxidation was taking place even at -23 degrees C. Painty attribute did not increase until stale was >3. An increase in fruity attribute was unexpected. With increases in fruity and stale attributes a decrease in roasted peanut was expected. However, storage at -23 degrees C seems to stabilize the roasted peanut lability when compared to storage at -10 degrees C. Fruity and stale interactions with roasted peanut and lability of roasted peanut were shown to be three separate and identifiable effects on roasted peanut.  相似文献   

15.
Volatile emissions of navel orange (Citrus sinensis L. Osbeck cv. Washington) fruit were evaluated as a means for predicting and gauging freeze damage. The fruits were subjected to -5 or -7 degrees C treatments in a laboratory freezer for various time periods of 2-9.5 h and stored at 23 degrees C for 1, 2, or 7 days, after which time the emission of volatiles from the fruit was measured. Following the final day of volatile measurements the fruits were stored at 5 degrees C for an additional 2-3 weeks and then evaluated for fruit quality characteristics. Peel injury in the form of brown lesions, drying of the juice vesicles, a decline in acidity, and a loss of flavor were observed to occur as a result of freezing. Corresponding to the loss in fruit quality were large increases in the emissions of ethanol, ethyl butanoate, methyl hexanoate, and ethyl octanoate. With the exception of methyl hexanoate, for which volatile emissions decreased during storage for 7 days at 23 degrees C, all of the other volatiles were relatively unchanged in amount by storage. Treatment at -7 degrees C caused greater injury, quality loss, and more volatile emanation than did freezing at -5 degrees C. The measurement of volatile emissions appears to be a useful approach to identify freeze-damaged navel oranges.  相似文献   

16.
Ten cranberry (Vaccinium macrocarpon Aiton) cultivars were evaluated for oxygen radical absorbance capacity (ORAC), anthocyanins, and total phenolics contents after three months of storage at 0, 5, 10, 15, and 20 degrees C. The antioxidant capacity of cranberry was affected by cultivars and storage temperatures. Among the 10 cranberry cultivars used in this study, Early Black, Crowley, and Franklin had higher antioxidant capacities than the other cultivars. ORAC values, anthocyanins, and total phenolics contents increased during storage. The highest increases in antioxidant activity, anthocyanin, and phenolics contents occurred at 15 degrees C storage. Fruit stored at 20 degrees C had lower ORAC values than those stored at 15 degrees C. A positive relationship existed between ORAC values and anthocyanin or phenolic content in all 10 cranberry cultivars at different storage temperatures.  相似文献   

17.
This study aimed at investigating protein and lipid oxidation during frozen storage of rainbow trout. Rainbow trout fillets were stored for 13 months at -20, -30, or -80 degrees C, and samples were analyzed at regular intervals for lipid and protein oxidation markers. Lipid oxidation was followed by measuring lipid hydroperoxides (PV), as well as secondary oxidation products (volatiles) using dynamic headspace GC-MS. Free fatty acids (FFA) were measured as an estimation of lipolysis. Protein oxidation was followed using the spectrophotometric determination of protein carbonyls and immunoblotting. Significant oxidation was observed in samples stored at -20 degrees C, and at this temperature lipid and protein oxidation seemed to develop simultaneously. FFA, PV, and carbonyls increased significantly for the fish stored at -20 degrees C, whereas the fish stored at -30 and -80 degrees C did not show any increase in oxidation during the entire storage period when these methods were used. In contrast, the more sensitive GC-MS method used for measurement of the volatiles showed that the fish stored at -30 degrees C oxidized more quickly than those stored at -80 degrees C. Detection of protein oxidation using immunoblotting revealed that high molecular weight proteins were oxidized already at t = 0 and that no new protein oxidized during storage irrespective of the storage time and temperature. The results emphasize the need for the development of more sensitive and reliable methods to study protein oxidation in order to gain more explicit knowledge about the significance of protein oxidation for food quality and, especially, to correlate protein oxidation with physical and functional properties of foods.  相似文献   

18.
辐照大蒜抑制发芽的部分加工工艺技术研究   总被引:6,自引:2,他引:4  
陈云堂 《核农学报》1999,13(6):330-338
本文对辐照大蒜抑制发芽的部分工艺进行了研究和分析。研究结果表明:1低温( - 2 ±1 ℃) 贮藏能延长大蒜的适宜辐照期,冷藏至当年底出库辐照,仍然具有良好的抑芽效果;冷藏至翌年3 月辐照,其抑芽效果有不同程度的降低;2在大蒜适宜辐照期内,辐照后冷藏与冷藏后再辐照的抑芽效果一致;但冷藏时间过长( 至翌年3月) ,辐照的抑芽效果不如先辐照后冷藏的效果好;3辐照大蒜幼芽及芽鞘褐变的主要原因是贮藏温度过高引起的,而在低温条件下( - 2 ±1 ℃) 贮藏不会产生褐变;辐照大蒜、辐照后冷藏大蒜和冷藏后辐照大蒜进入常温贮藏后,幼芽及芽鞘很快就会产生褐变。  相似文献   

19.
Prevention of browning of apples slices has been difficult to achieve because of the rapidity of the enzymatic oxidation of phenolic substrates even under reduced atmospheric pressure storage. Combinations of enzymatic inhibitors, reducing agents, and antimicrobial compounds containing calcium to extend storage life were tested to decrease the browning of Red Delicious apple slices stored at 5 and 10 degrees C under normal atmospheric conditions. Treatments were devised to prevent browning for up to 5 weeks at 5 degrees C with no apparent microbial growth using dipping solutions of compounds derived from natural products consisting of 4-hexylresorcinol, isoascorbic acid, a sulfur-containing amino acid (N-acetylcysteine), and calcium propionate. Analyses of organic acids and the major sugars revealed that the slices treated with the combinations of antibrowning compounds retained higher levels of malic acid and had no deterioration in sugar levels at 5 and 10 degrees C, indicating that higher quality was maintained during storage.  相似文献   

20.
The effects of post-harvest and packaging treatments on glucoraphanin (4-methylsulfinylbutyl glucosinolate), the glucosinolate precursor of anticancer isothiocyanate sulforaphane [4-methylsulfinylbutyl isothiocyanate], were examined in broccoli (Brassica oleracea var. italica) during storage times. The results showed that at 20 degrees C, 55% loss of glucoraphanin concentration occurred in broccoli stored in open boxes during the first 3 days of the treatment and 56% loss was found in broccoli stored in plastic bags by day 7. Under both air and controlled atmosphere (CA) storage, glucoraphanin concentration appeared to fluctuate slightly during 25 days of storage and the concentrations under CA was significantly higher than those stored under air treatment. In modified atmosphere packaging (MAP) treatments, glucoraphanin concentration in air control packaging decreased significantly whereas there were no significant changes in glucoraphanin concentration in MAP with no holes at 4 degrees C and two microholes at 20 degrees C for up to 10 days. Decreases in glucoraphanin concentration occurred when the broccoli heads deteriorated. In the present study, the best method for preserving glucoraphanin concentration in broccoli heads after harvest was storage of broccoli in MAP and refrigeration at 4 degrees C. This condition maintained the glucoraphanin concentration for at least 10 days and also maintained the visual quality of the broccoli heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号