首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湿地植被在湿地生态系统中起着无可替代的作用,其空间分布在很大程度上反映了滨海湿地的开发利用、生态环境特征和健康状况。以杭州湾南岸为研究区,以QuickBird影像和野外调查数据为数据源,基于面向对象原理在确定最优分割尺度的基础上采用随机森林模型,对滨海土地利用分类,并精确提取湿地植被。结果表明:面向对象和随机森林相结合的方法可以有效提取杭州湾5种湿地植被类型和6种土地利用类型,分类总体精度达86.90%,Kappa系数达到0.85,5类滨海湿地植被的用户精度均达到85%以上,更有海三棱藨草Scirpus mariqueter的用户精度达到100%,充分说明了基于面向对象分割和结合随机森林模型方法适用于滨海湿地植被信息的精确提取。  相似文献   

2.
基于随机森林回归方法的水稻产量遥感估算   总被引:2,自引:0,他引:2  
为寻求高效的水稻产量估算方法,以2017年长春市九台和德惠地区的采样点为样本,遥感数据和气象数据为特征变量,通过对产量与特征变量间的相关性分析与特征变量之间的主成分分析和袋外数据(out-of-data,OOB)变量的重要性分析对特征变量进行选择,以选择后的特征变量为输入变量建立水稻产量估算的随机森林回归(RFR)模型。结果表明:特征变量优选后的RFR模型对水稻产量估算的精度更高,决定系数R~2和平均相对误差MRE分别为0.950和0.060;并将该模型应用到农安地区,以多元逐步回归模型作为比较模型,表明RFR模型的水稻产量估算精度明显优于多元逐步回归模型,RFR模型的R~2和MRE分别为0.730和0.090,多元逐步回归模型的R~2和MRE分别为0.530和0.120。  相似文献   

3.
为探索西南地区水稻种植信息的有效提取方法,以重庆市永川区朱沱镇为例,根据Sentinel-2多光谱影像,结合高分一号(GF-1)影像数据选取样本分布点,构建水稻作物信息随机森林提取模型,同时分析样本地类像元光谱曲线,构建不同地类样本影像像元光谱库,并将随机森林分类结果与传统最大似然法、光谱角及基于时差的光谱角水稻空间种植信息分类结果进行对比及精度分析。结果显示,通过光谱角分类器提取地物精度有限,结合时差特征能够明显提高目标提取精度,而基于水稻样本信息训练构建的光谱角模型提取方法获取水稻种植面积准确率高达90.62%,分类结果总体精度达91.50%,Kappa系数达到0.83,实现了对西南地块破碎地区分散作物种植信息的有效提取,可为西南地形复杂、地块破碎地区农作物信息提取提供一定参考。  相似文献   

4.
文本分类作为处理大量文本数据的关键技术,可以在较大程度上解决"信息爆炸"所带来的问题。Breiman提出的随机森林算法具有良好的泛化性和鲁棒性、对噪声不敏感、能处理连续属性的特点,很适合用来建立文本分类模型。笔者将随机森林算法尝试性引入文本分类领域,构建基于随机森林的文本分类模型,并在标准文本测试集Reuters-21578进行测试和比较,结果表明:(1)该模型可以较好地应用于文本分类;(2)与基于CART、REPTree和J48的文本分类模型的结果相比较,基于随机森林的文本分类模型的效果最好,F1-Measure达到了0.777;(3)基于随机森林的文本分类模型操作方便、直观有效、评价结果可靠,为文本分类研究提供了新思路。  相似文献   

5.
以黑龙江省凉水国家级自然保护区为研究区,采用“高分一号”卫星提供的多光谱影像作为遥感数据源,通过对遥感影像进行小波变换处理,之后选择植被指数、纹理特征、地形因子作为分类特征,利用随机森林算法对该地区森林类型进行分类。结果表明,遥感图像在进行小波变换后,基于随机森林算法的森林类型分类精度为91.68%,Kappa系数为0.90,较未进行小波变换时的分类精度提高10.67%。总体来看,结合小波变换的随机森林分类方法可以获得比较高的分类精度。为森林类型分类提供一种新的思路,且为提高森林类型分类精度提供一种参考方法。  相似文献   

6.
基于随机森林算法的凉水自然保护区蓄积量反演研究   总被引:1,自引:0,他引:1  
以黑龙江凉水自然保护区为研究对象,采用GF-1卫星遥感影像为数据源,提取遥感影像在不同窗口大小下的纹理特征信息,与遥感影像自身的光谱信息相结合;利用随机森林算法,结合地面蓄积量采样点数据,建立凉水自然保护区蓄积量反演模型。结果表明:只基于卫星光谱的反演模型的相关系数为0.59,基于卫星光谱与纹理特征的蓄积量反演模型的相关系数为0.65;当窗口大小为3×3时,森林蓄积量反演效果最好。研究表明,基于卫星光谱信息和纹理特征信息,利用随机森林算法进行森林蓄积量反演在森林资源调查方面具有良好的应用前景。  相似文献   

7.
基于随机森林的杉木适生性预测研究   总被引:1,自引:0,他引:1  
以中国林业科学研究院热带林业实验中心杉木树种为研究对象,从森林资源二类调查数据中提取优势树种为杉木的小班,将样本数据按7:3的比例分为训练样本和测试样本。以海拔、地貌类型、坡度、坡向、坡位、土壤种类、成土母岩、土壤厚度、腐殖质层厚度为输入变量,以杉木生长适宜性为输出变量,运用随机森林算法建立杉木适生性预测模型,对不同立地条件下的造林地进行杉木适生性预测。同时,利用随机森林模型的变量重要性评估功能,分析了各立地因子对杉木生长的影响权重。结果表明:基于随机森林的杉木适生性预测模型的训练精度为84.3%,泛化精度达到89.5%,具有较高的预测准确率;研究区域内对杉木生长影响较大的立地因子依次为坡度、坡向、腐殖质层厚、海拔,影响因素较小的是土壤种类、土层厚度;就单因素的影响而言,海拔≥350 m的低山和中山地区,坡度在25°~34°之间比较适宜杉木生长。基于随机森林的杉木适生性预测模型可处理复杂的非线性关系,可将模型应用到无林地的造林决策,实现有林地与无林地对杉木适生性判断的有机统一,也可推广到其他树种,为适地适树提供依据。   相似文献   

8.
9.
获取水稻种植信息对于指导水稻生产,监测作物生长及合理分配水资源具有重要意义。针对基于单时相影像提取水稻信息精度有限,以Sentinel-2A/B多时相影像为数据源,构建NDVI、EVI、NDWI和光谱特征4种时序特征数据集并设计6种试验方案,结合随机森林算法对水稻种植信息进行提取。结果表明,NDVI、EVI时序曲线可以较好反映出水稻生育期的物候特征,不同地类的光谱时序曲线和NDWI时序曲线可分离度较高,有利于提高分类精度;基于NDVI时序数据集的分类精度最低,基于光谱时序数据集的分类精度最高,总体精度达95.559 0%,Kappa系数为0.943 3,与基于NDVI的分类结果相比,总体精度、Kappa系数、水稻生产者精度和用户精度分别提高了3.530 4%、0.044 9、8.64%和3.36%,水稻与旱地的混分现象得到有效抑制。该研究为区域水稻种植信息精确提取在数据源选择、时序特征构建方面提供了一种新的思路和技术手段。  相似文献   

10.
基于随机森林算法的原始土壤图更新研究   总被引:3,自引:0,他引:3  
以湖北省黄冈市红安县华家河镇滠水河流域为研究区,利用随机森林算法(random forest,RF)结合多源环境变量,对研究区原有的土壤图斑进行分解制图,将混合多种土壤类型的复合土壤图斑进行细化,在土壤多边形内部画出新的边界来代表单一土壤类型,并通过373个实地采样点验证更新后的土壤图。结果显示,更新后的土壤图其制图精度从原有的63%提高到了76%,展现了更为详细的空间细节和空间变化信息,表明利用随机森林算法进行数字土壤制图的可行性和可靠性。  相似文献   

11.
基于随机森林算法的耕地质量定级指标体系研究   总被引:3,自引:0,他引:3  
【目的】分析研究区域内的耕地质量差异,优化耕地利用与布局,为耕地保护提供参考依据。【方法】以青海省共和县、都兰县和乌兰县的耕地为研究对象,根据历史及现有文献收集耕地质量的影响因素,采用随机森林算法和相关性分析筛选定级指标并确认权重,通过加权求和法计算定级指数并划分级别,得到定级结果。与常用的特尔菲法定级成果进行比较分析。【结果】随机森林算法得到的变量重要性(I)范围在0.03~11.94,相关性分析结果显示,大部分影响因素间相关性不显著,有8个为显著相关,综合I值和相关性分析结果将30个影响因素收敛为4个纬度下的14个定级指标,其中影响研究区域耕地质量的主要因素为生态系统脆弱性、生长季平均降水和年总太阳辐射量,权重分别为0.11、0.10和0.09,随机森林算法评价结果与实际情况相符。【结论】与常用的特尔菲法比较,随机森林算法稳定性更好,级别指数变幅区间更小,更有利于构建省级空间尺度的耕地级别可比序列。  相似文献   

12.
通过处理嘉禾县近年来发生地质灾害以及地形地貌、降雨等数据,分析研究区地质灾害的空间分布特征和成因机理;采用随机森林模型,构建滑坡易发性等级区划图;结合2022年汛期强对流强降水过程,在暴雨来临之前,通过手机短信、QQ、微信群发布地质灾害提醒信息;在暴雨来临之时,及时电话叫应服务,特别是行廊镇、袁家镇、坦坪镇、晋屏镇、珠泉镇;暴雨之后,结合地质灾害易发性分布图,对行廊镇、袁家镇、坦坪镇、晋屏镇、珠泉镇的乡镇负责人进行特别的电话警示。将气象服务从县一级延伸至乡镇,甚至村一级,筑牢气象防灾减灾的第一道防线。  相似文献   

13.
跌倒对老年人的影响相比年轻人要大很多,而跌倒跟人体的平衡有关,但目前没有全面的平衡定义,本文针对老年人身体平衡问题进行了讨论。本文根据线性回归,神经网络,梯度增强回归,随机森林四种模型的优劣,使用Python进行了模型的评估验证,最终选择基于Bagging方法的随机森林建立了多人评估模型,根据结果对老年人身体平衡能力分别进行了分析讨论。  相似文献   

14.
彭乐文  张亚 《湖北农业科学》2020,59(2):157-160+165
在遥感影像中,植物的含水量、土壤湿度在短波红外波段下表现很敏感,而红光波段和近红外波段对植物覆盖率、植物长势反映很强烈。基于时间差异的决策树水稻提取模型,通过计算水稻生长不同时期的归一化植被指数NDVI和土壤含水量指数LSWI,在江苏省盐城市射阳县开展了水稻种植区提取的相关研究。经过提取的水稻面积和地方统计数据对比表明,该模型能有效区分出水域、玉米和菜地等较易与水稻种植区混淆的地物,面积提取精度达到76.26%。  相似文献   

15.
基于随机森林算法的冬小麦叶面积指数遥感反演研究   总被引:9,自引:1,他引:9  
【目的】通过利用随机森林算法(random forest,RF)反演冬小麦叶面积指数(leaf area index, LAI),及时、准确地监测冬小麦长势状况,为作物田间管理和产量估测等提供科学依据。【方法】本研究依据冬小麦拔节期、挑旗期、开花期及灌浆期地面观测数据,将相关系数分析(correlation coefficient,r)和袋外数据(out-of-bag data,OOB)重要性分析与随机森林算法(random forest,RF)相结合,在优选光谱指数和确定最佳自变量个数的基础上,构建了两种冬小麦LAI反演模型|r|-RF和OOB-RF,并利用独立数据集对两种模型进行验证;然后,将所建LAI反演模型用于无人机高光谱影像,进一步检验所建模型对无人机低空遥感平台的适用性和可靠性。【结果】|r|-RF和OOB-RF反演模型分别采用相关性前5强、重要性前2强的光谱指数作为输入因子时精度最优,验证决定系数(R2)分别为0.805、0.899,均方根误差(RMSE)分别为0.431、0.307,表明这两个模型均能对作物LAI进行精确反演,其中OOB-RF模型的反演效果更好。利用无人机高光谱影像数据结合OOB-RF估算模型反演得到冬小麦LAI与地面实测值的拟合方程的决定系数R2为0.761,RMSE为0.320,数值范围(1.02-6.41)与地面实测(1.29-6.81)亦比较吻合。【结论】本文基于地面数据构建的OOB-RF模型不仅具有较高的反演精度,而且适用性强,可用于无人机高光谱遥感平台提取高精度的冬小麦LAI信息。  相似文献   

16.
作为研究地表能量平衡的重要参数,地表温度是研究地表物理过程、监测全球资源环境以及气候变化的重要指标之一。通过降尺度处理提高MODIS LST数据空间分辨率,对LST和气候的研究都具有重要的意义。选取黑龙江省作为研究区,选择MOD11A2数据,通过随机森林算法对MODIS LST(1 000 m空间分辨率)进行降尺度处理,并通过气象数据作为验证。试验结果表明:利用随机森林算法对黑龙江省LST数据进行降尺度,降尺度结果良好,降尺度LST的均方根误差(Root Mean Square,RMSE)为2.13 K。  相似文献   

17.
计算机网络时代,机器学习方法不断更新并被广泛应用于金融、医学、生物学等多个领域。以进一步提高降水量预报准确率为目的,将机器学习方法应用于降水量预报,介绍了一种以随机森林为基础的汛期降水量预报模型,以郑州为例,使用随机森林预报汛期降水量,将随机森林的预报结果与BP神经网络的预报结果进行比较,结果显示,随机森林预报精度越高,准确率越高,同时避免了过度拟合的问题,稳定性强。  相似文献   

18.
为快速获得水体中总氮含量,采用随机森林方法建立总氮预测回归模型。结果显示,较少的数据异常值仍会造成随机森林模型较大的误差,去除4.6%的异常值后,模型均方根误差(MSE)降低了42.4%。随机森林模型可对自变量的相对重要性做出评估,对总氮而言,最重要的变量是氨氮,模型2个主要参数随机树数量(ntree)和随机分割变量数(mtry)的值分别为400和2。在选择合适的参数值时,随机森林模型不易出现过拟合显示,建立的随机森林模型可以快速预测水体中总氮的含量。  相似文献   

19.
作物类型遥感识别是农业遥感的重要组成部分,为获取作物种植面积、长势信息并进行产量估算提供了手段。目前,对玉米、水稻和小麦等大宗农作物进行单一识别或两类间分类识别的技术研究较多,对研究区多种农作物同步分类识别的研究较少。本研究基于随机森林分类器利用Landsat 8数据开展宁夏农作物分类,对八种主要农作物春小麦、玉米、水稻、苜蓿、蔬菜、葡萄、枸杞和瓜类进行同步分类试验。结果表明:随机森林方法可以满足研究区内多类作物同步监测的需求,精度可达80%以上。单时相分类精度可达到81.8%,后分类处理精度可达到82.8%,时间序列分类精度可达到85.1%,时间序列分类和后分类处理可以有效提高分类精度。随机森林分类精度随着树数量的增加而增大,当树的数量足够多时,模型趋于稳定,特征变量对精度的影响被控制在一定范围内,当特征变量设置为总特征变量的平方根或对数时,精度达到最佳。因此,基于对分类实验时效性的考虑,将参数分别设置为Ntree=100,Mtry=总特征变量的平方根或对数。  相似文献   

20.
根据国内外管道缺陷预测模型与随机森林(Random Forests)模型的研究现状,分析其优势与存在的问题,并基于陕京管道GIS系统对某段管道的监控和记录数据,建立并优化随机森林模型,对该管段进行缺陷等级预测。随机森林模型可用于分析各指标对管道缺陷的影响程度,具有指标重要度评估功能,模型的评判精度、分级结果准确,数据挖掘能力很强。将随机森林模型与GIS技术结合,能更好地预测管道缺陷,从而采取相应的控制措施。(图4,表2,参20)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号