首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of the current study were to investigate the additive genetic associations between heifer pregnancy at 16 months of age (HP16) and age at first calving (AFC) with weight gain from birth to weaning (WG), yearling weight (YW) and mature weight (MW), in order to verify the possibility of using the traits measured directly in females as selection criteria for the genetic improvement of sexual precocity in Nelore cattle. (Co)variance components were estimated by Bayesian inference using a linear animal model for AFC, WG, YW and MW and a nonlinear (threshold) animal model for HP16. The posterior means of direct heritability estimates were: 0.45 ± 0.02; 0.10 ± 0.01; 0.23 ± 0.02; 0.36 ± 0.01 and 0.39 ± 0.04, for HP16, AFC, WG, YW and MW, respectively. Maternal heritability estimate for WG was 0.07 ± 0.01. Genetic correlations estimated between HP16 and WG, YW and MW were 0.19 ± 0.04; 0.25 ± 0.06 and 0.14 ± 0.05, respectively. The genetic correlations of AFC with WG, YW and MW were low to moderate and negative, with values of − 0.18 ± 0.06; − 0.22 ± 0.05 and − 0.12 ± 0.05, respectively. The high heritability estimated for HP16 suggests that this trait seem to be a better selection criterion for females sexual precocity than AFC. Long-term selection for animals that are heavier at young ages tends to improve the heifers sexual precocity evaluated by HP16 or AFC. Predicted breeding values for HP16 can be used to select bulls and it can lead to an improvement in sexual precocity. The inclusion of HP16 in a selection index will result in small or no response for females mature weight.  相似文献   

2.
The objective was to estimate genetic correlations between body weight (BW), scrotal circumference and visual evaluation scores of body conformation measured at standard ages in Guzerat cattle. All measurements were performed at 205 (weaning age), 365, 450 and 550 days of age; for BW, two additional measurements (at birth and 120 days of age) were realized. The data utilized in this study were retrieved from a database of the Brazilian Association of Zebu Breeders that contained information of registered Guzerat animals born between 1970 and 2013. Genetic parameters were estimated in bi‐trait analyses by using Bayesian inference. Genetic correlations between BW at 205 and 450 days of age with other traits were high and positive, whereas the correlations between visual evaluation scores with other traits were moderate. Based on correlations herein obtained, we conclude that selection based on BW results in increased visual scores and scrotal circumference, leading to improvements in productive performance and animals with best body conformation.  相似文献   

3.
The total meat yield in a beef cattle production cycle is economically very important and depends on the number of calves born per year or birth season, being directly related to reproductive potential. Accumulated Productivity (ACP) is an index that expresses a cow's capacity to give birth regularly at a young age and to wean animals of greater body weight. Using data from cattle participating in the “Program for Genetic Improvement of the Nelore Breed” (PMGRN — Nelore Brasil), bi-trait analyses were performed using the Restricted Maximum Likelihood method based on an ACP animal model and the following traits: age at first calving (AFC), female body weight adjusted for 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted for 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. Median estimated ACP heritability was 0.19 and the genetic correlations with AFC, BW365, BW450, SC365, SC450, SC550 and SC730 were 0.33, 0.70, 0.65, 0.08, 0.07, 0.12 and 0.16, respectively. ACP increased and AFC decreased over time, revealing that the selection criteria genetically improved these traits. Selection based on ACP appears to favor the heaviest females at 365 and 450 days of age who showed better reproductive performance as regards AFC. Scrotal circumference was not genetically associated with ACP.  相似文献   

4.
Genetic parameters and genetic trends for age at first calving (AFC), interval between first and second calving (CI1), and interval between second and third calving (CI2) were estimated in a Colombian beef cattle population composed of Angus, Blanco Orejinegro, and Zebu straightbred and crossbred animals. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 3-trait model included the fixed effects of contemporary group (year-season of calving-sex of calf; sex of calf for CI1 and CI2 only), age at calving (CI1 and CI2 only), breed genetic effects (as a function of breed fractions of cows), and individual heterosis (as a function of cow heterozygosity). Random effects for AFC, CI1, and CI2 were cow and residual. Program AIREMLF90 was used to perform computations. Estimates of heritabilities for additive genetic effects were 0.15 ± 0.13 for AFC, 0.11 ± 0.06 for CI1, and 0.18 ± 0.11 for CI2. Low heritabilities suggested that nutrition and reproductive management should be improved to allow fuller expressions of these traits. The correlations between additive genetic effects for AFC and CI1 (0.33 ± 0.41) and for AFC and CI2 (0.40 ± 0.36) were moderate and favorable, suggesting that selection of heifers for AFC would also improve calving interval. Trends were negative for predicted cow yearly means for AFC, CI1, and CI2 from 1989 to 2004. The steepest negative trend was for cow AFC means likely due to the introduction of Angus and Blanco Orejinegro cattle into this population.  相似文献   

5.
《Livestock Science》2006,99(1):51-59
Improvement of female fertility has become of fundamental importance for profit maximization in the beef cattle herds. Consequently, animal breeding programs in Brazil have applied selection effort to traits related to reproduction as for scrotal circumference (SC), which is already incorporated to the selection routine of the breeders. However, studies have reported no favorable genetic correlation (rg) of SC with some fertility traits. Recently, stayability (STAY) has been used as means to better indicate and improve female fertility. Values for rg of STAY with reproductive and productive traits are not available in literature. Therefore, the objectives of the present study are to analyze the rg between SC and STAY and STAY with weight at 550 days (W550) in Nelore cattle. Data set of 55,682, 28,507 and 59,750 animals for STAY, SC and W550, respectively, were analyzed using two-trait animal model based on Gibbs sampling algorithm. The estimate of posterior rg between STAY and SC was 0.07 ± 0.03, which can be considered as low and suggesting that STAY does not have sensible relation with SC. The rg of STAY and W550 was 0.15 ± 0.01, considered low, although positive. It means that selection for W550 should not negatively affect STAY.  相似文献   

6.
Estimates of genetic parameters were obtained for body measurement traits of 648 animals at 4 months of age, of 545 at 8 months and carcass traits of 14 972 animals with the use of an animal model by the restricted maximum likelihood procedure. The estimated heritabilities for carcass traits were high (0.41 to 0.54). At 4 months the estimated direct heritabilities for body measurement traits were moderate to high (0.28 to 0.64), except for chest width (0.19); at 8 months they were also moderate to high (0.23 to 0.49), except for chest depth and chest width (0.18 and 0.06, respectively). Maternal heritabilities for all body measurement traits were low at both ages. The results indicate that because of their moderate direct genetic correlations with body measurement traits, carcass weight, rib thickness and subcutaneous fat thickness can be improved; however, rib eye area and beef marbling standard show little such possibility considering their correlation with body measurement traits.  相似文献   

7.
To estimate heritability (h2) for yearling heifer pregnancy and to estimate the genetic correlation between heifer pregnancy and scrotal circumference, 18,145 records of Nellore heifers exposed to breeding at an age of approximately 14 mo and 25,466 records of contemporary young bulls were analyzed. Heifer pregnancy was considered as a categorical trait, with the value 1 (success) assigned to heifers that were pregnant after rectal palpation approximately 60 d after the end of a 90-d breeding season and the value 0 (failure) otherwise. A single-trait animal model for heifer pregnancy and a two-trait animal model including heifer pregnancy and scrotal circumference were used. Contemporary groups were defined in two ways: including (CG2) or not including (CG1) weaning management of the heifer. Heritability estimates obtained by Method R in single-trait analyses were 0.68 +/- 0.09 and 0.61 +/- 0.10 using CG1 and CG2 definitions, respectively. Heritability estimates for two-trait analyses were 0.69 +/- 0.09 (CG1) and 0.63 +/- 0.08 (CG2) for heifer pregnancy and 0.57 +/- 0.03 (both CG) for scrotal circumference. The genetic correlation estimates between the two traits were 0.20 +/- 0.12 (CG1) and 0.20 +/- 0.13 (CG2). Based on the results of this study, EPD for heifer pregnancy can be used to select bulls for the production of precocious daughters and will be more effective than selecting on scrotal circumference EPD in Nellore cattle. However, scrotal circumference can be incorporated in a two-trait analysis to increase the accuracy of prediction for heifer pregnancy EPD for young bulls. Using contemporary group without heifer weaning management gave higher h2 and, for two-trait analysis, converged more quickly.  相似文献   

8.
The objective of this study was to determine an appropriate method for using yearling scrotal circumference observations and heifer pregnancy observations to produce EPD for heifer pregnancy. We determined the additive genetic effects of and relationship between scrotal circumference and heifer pregnancy for a herd of Hereford cattle in Solano, New Mexico. The binary trait of heifer pregnancy was defined as the probability of a heifer conceiving and remaining pregnant to 120 d, given that she was exposed at breeding. Estimates of heritability for heifer pregnancy and scrotal circumference were .138+/-.08 and .714+/-.132, respectively. Estimates of fixed effects for age of dam and age were significant for heifer pregnancy and bull scrotal circumference. The estimate of the additive genetic correlation between yearling heifer pregnancy and yearling bull scrotal circumference was .002+/-.45. Additional analyses included models with additive genetic groups for scrotal circumference EPD for heifer pregnancy or heifer pregnancy EPD for scrotal circumference to account for a potential nonlinear relationship between scrotal circumference and heifer pregnancy. Results support the development of a heifer pregnancy EPD because of a higher estimated heritability than previously reported. The development of a heifer pregnancy EPD would be an additional method for improving genetic merit for heifer fertility.  相似文献   

9.
Records of Nellore animals born from 1990 to 2006 were used to estimate genetic correlations of visual scores at yearling (conformation, C; finishing precocity, P; and muscling, M) with primiparous subsequent rebreeding (SR) and days to first calving (DC), because the magnitude of these associations is still unknown. Genetic parameters were estimated by multiple‐traits Bayesian analysis, using a nonlinear (threshold) animal models for visual scores and SR and a linear animal models for weaning weight (WW) and DC. WW was included in the analysis to account for the effects of sequential selection. The posterior means of heritabilities estimated for C, P, M, SR and DC were 0.24 ± 0.01, 0.31 ± 0.01, 0.30 ± 0.01, 0.18 ± 0.02 and 0.06 ± 0.02, respectively. The posterior means of genetic correlations estimated between SR and visual scores were low and positive, with values of 0.09 ± 0.02 (C), 0.19 ± 0.03 (P) and 0.18 ± 0.05 (M). On the other hand, negative genetic correlations were found between DC and C (?0.11 ± 0.09), P (?0.19 ± 0.09) and M (?0.16 ± 0.09). The primiparous rebreeding trait has genetic variability in Nellore cattle. The genetic correlations between visual scores, and SR and DC were low and favourable. The genetic changes in C, P and M were 0.02, 0.03 and 0.03/year, respectively. For SR and DC, genetic trends were 0.01/year and ?0.01 days/year, respectively, indicating that the increase in genetic merit for reproductive traits was small over time. Direct selection for visual scores together with female reproductive traits is recommended to increase the fertility of beef cows.  相似文献   

10.
Heritabilities and genetic correlations between birth weight (n = 13,741), adjusted 240-day weaning weight (WW, n = 8,806) and age at first calving (AFC, n = 3,955) of Brown Swiss cattle in Mexico were estimated. Data from 91 herds located in 19 of 32 states of Mexico from 1982 to 2006 were provided by the Mexican Brown cattle Breeder Association. Components of (co)variance, direct and maternal heritabilities were estimated for birth weight, WW and AFC using bivariate animal models. Direct and maternal heritabilities were 0.21 and 0.05 for birth weight, 0.40 and 0.05 for WW, whereas direct heritability for AFC was 0.08. The correlations between direct and maternal effects for birth weight and WW were −0.49 and −0.64, respectively. The genetic correlations between birth weight–WW and WW–AFC were 0.36 and −0.02, respectively. Under the conditions of this study, selection for increasing birth weight would increase WW, but increasing WW will not change AFC.  相似文献   

11.
The aim of this study was to estimate genetic parameters for prenatal (PRE) and postnatal (POS) mortality in Nellore cattle. A total of 13 141 (PRE) and 17 818 (POS) records from Nellore females were used. PRE and POS were recorded using binary scale scores: a score of ‘1’ was given to calves that were born alive (PRE) and those that were alive at weaning (POS), and a score of ‘0’ was given to calves that were not alive at or around birth (PRE), as well as to those weighed at birth but not at weaning (POS). The relationship matrix included 698 sires, 107 paternal grandsires and 69 maternal grandsires. Data were analysed using Bayesian inference and a sire–maternal grandsire threshold model, including contemporary groups as random effects, and the classes of dam age at the beginning of mating season (for PRE), and dam age at calving and birthweight (linear covariable) (for POS), as fixed effects. For both traits, the covariance between direct and maternal effects (rD,M) was estimated (rD,M≠ 0) or fixed at zero (rD,M = 0). PRE and POS rates were 3.00 and 4.04%, respectively. Estimates of direct and maternal heritability were 0.07 and 0.17, respectively, for PRE, and 0.02 and 0.07, respectively, for POS, assuming rD,M = 0. For rD,M ≠ 0, these estimates were 0.07 and 0.12, respectively, for PRE, and 0.03 and 0.07, respectively, for POS. The correlation estimates between direct and maternal effects were ?0.71 (PRE) and ?0.33 (POS). PRE and POS show low genetic variability, indicating that these traits probably suffer major environmental influences. Additionally, our study shows that the maternal genetic component affects preweaning calf mortality twice as much (or more) as the direct genetic component. A large number of offspring per sire is necessary in progeny tests to genetically decrease calf mortality.  相似文献   

12.
Genetic parameters for feed intake and performance traits of 514 bulls and carcass traits of 22 099 of their progeny, and the relationships of measures of feed intake with performance and carcass traits were estimated. Feed intake traits were dry matter intake (DMI), concentrate intake (CONI), roughage intake, ratio of roughage intake to DMI, metabolizable energy intake (MEI) and digestible crude protein intake (DCPI). Performance traits included daily gain, metabolic weight, live weight at the end of test, dry matter conversion ratio and residual feed intake. Progeny carcass traits were carcass weight, percentage of meat yield, rib eye area (REA), subcutaneous fat, marbling score, meat colour (MCS), fat colour (FCS) and meat quality grade. All the feed intake and performance traits were moderately heritable. The heritabilities for REA and MCS were moderate, and that for FCS was low, while those for the other carcass traits were high. Selection against DMI, CONI and DCPI would reduce excessive intake of feed, but would have undesirable effects on growth and most of the carcass traits. Selection against MEI would lead to improvements in feed efficiency and growth traits. Selection against DCPI would also improve feed efficiency; however, responses in growth traits would decrease. Results indicate that selection against MEI might be better than any other measures of feed intake to improve feed efficiency with simultaneous improvement in growth and most of the carcass traits.  相似文献   

13.
14.
15.
Field records from the American Angus Association were used to study the associations of sire marbling score EPD and sire weaning weight maternal (milk) EPD with age at first calving (AFC) and calving interval (CI). Cows were selected based on the accuracy of their sire's milk (> or =.7) or marbling (> or =.6) EPD. The data were screened using biological constraints, and regression models were used to identify records that were greater than 5 SD from the mean. The AFC was modeled for both milk and marbling data sets to account for effects of year, sire EPD, and their interaction. The CI was subdivided into first, second, and mature calving interval traits and modeled to account for state, year, calf sex, calf birth weight (BW), calf weaning weight (WW), sire EPD, and interactions of EPD with year and state. Derivative-free REML was used to estimate heritability and genetic correlations for AFC and CI. Sire milk EPD and marbling EPD were predictors of AFC (P < .001); however, pooled estimates were unreliable because of state x EPD interactions (P < .001). Increases in sire milk EPD resulted in reductions in AFC; however, there was no consistent pattern to effects of marbling EPD increases. Models accounted for < 8% of variation in AFC. Sire milk EPD was not a predictor of first, second, or mature CI (P > .1). Sire marbling score EPD was not a predictor of second, or mature CI (P > .1); however, it was associated (P = .059) with first CI, although regression estimates varied across states and prevented pooling. The BW, sex, and WW were predictors of CI (P < .001). Increases in BW resulted in longer mature CI, and mature CI decreased as WW increased. The AFC was heritable (.22), and CI traits had heritabilities ranging from .01 to .03. The AFC was genetically correlated with first CI (-.6) and mature CI (-.93). Genetic correlations between CI traits were uninterpretable because of low additive genetic variances. In conclusion, sire marbling score and milk EPD do not seem to be reliable predictors of AFC or CI. The BW and WW have significant but small effects on AFC and CI. Selection for AFC is possible, but earlier calving heifers may have longer calving intervals.  相似文献   

16.
Data comprising 53,181 calving records were analyzed to estimate the genetic correlation between days to calving (DC), and days to first calving (DFC), and the following traits: scrotal circumference (SC), age at first calving (AFC), and weight adjusted for 550 d of age (W550) in a Nelore herd. (Co)variance components were estimated using the REML method fitting bivariate animal models. The fixed effects considered for DC were contemporary group, month of last calving, and age at breeding season (linear and quadratic effects). Contemporary groups were composed by herd, year, season, and management group at birth; herd and management group at weaning; herd, season, and management group at mating; and sex of calf and mating type (multiple sires, single sire, or AI). In DFC analysis, the same fixed effects were considered excluding the month of last calving. For DC, a repeatability animal model was applied. Noncalvers were not considered in analyses because an attempt to include them, attributing a penalty, did not improve the identification of genetic differences between animals. Heritability estimates ranged from 0.04 to 0.06 for DC, from 0.06 to 0.13 for DFC, from 0.42 to 0.44 for SC, from 0.06 to 0.08 for AFC, and was 0.30 for W550. The genetic correlation estimated between DC and SC was low and negative (-0.10), between DC and AFC was high and positive (0.76), and between DC and W550 was almost null (0.07). Similar results were found for genetic correlation estimates between DFC and SC (-0.14), AFC (0.94), and W550 (-0.02). The genetic correlation estimates indicate that the use of DC in the selection of beef cattle may promote favorable correlated responses to age at first mating and, consequently, higher gains in sexual precocity can be expected.  相似文献   

17.
In this study, Bayesian analysis under a threshold animal model was used to estimate genetic correlations between morphological traits (body structure, finishing precocity and muscling) in Nelore cattle evaluated at weaning and yearling. Visual scores obtained from 7651 Nelore cattle at weaning and from 4155 animals at yearling, belonging to the Brazilian Nelore Program, were used. Genetic parameters for the morphological traits were estimated by two‐trait Bayesian analysis under a threshold animal model. The genetic correlations between the morphological traits evaluated at two ages of the animal (weaning and yearling) were positive and high for body structure (0.91), finishing precocity (0.96) and muscling (0.94). These results indicate that the traits are mainly determined by the same set of genes of additive action and that direct selection at weaning will also result in genetic progress for the same traits at yearling. Thus, selection of the best genotypes during only one phase of life of the animal is suggested. However, genetic differences between morphological traits were better detected during the growth phase to yearling. Direct selection for body structure, finishing precocity and muscling at only one age, preferentially at yearling, is recommended as genetic differences between traits can be detected at this age.  相似文献   

18.
This study was conducted on 20 949 reproductive records from 1998 to 2012 of 5 257 Sanhe cattle in Xiertala cattle farm,Inner Mongolia,which was a synthetic breed formed in China in 1986.Age at first pregnancy in heifer (AFPH),age at first calving in heifer (AFCH),gestation length in cow (GLC),days open in cow (DOC),and calving interval in cow (CIC) were considered for genetic evaluation.SAS 9.13 and DMU software were used for data processing,and AI-REML combined EM algorithm based on multiple traits animal model was employed for estimating variance components.The heritability for each trait were then calculated,and breeding value was used to analyze the genetic trends.The results showed that the estimated heritabilities of age at first pregnancy in heifer,age at first calving in heifer,gestation length in cow,days open in cow,calving interval in cow were 0.0552,0.0638,0.0527,0.1096 and 0.0844,respectively.The heritabilities were all less than 0.1 except days open (0.1096),indicating these were low inheritable traits.In general,trends of EBVs for each trait didn't show any defined progresses and indicating good reproductive performance maintained in Sanhe cattle.These results lay a theoretical foundation for optimizing breeding programs and improving the accuracy of selection in Sanhe cattle.  相似文献   

19.
The objective of this study was to estimate genetic parameters required for genetic evaluation of retail product percentage (RPP) in Simmental cattle. Carcass weight (HCW), subcutaneous fat thickness (FAT), longissimus muscle area (REA) and kidney, pelvic, and heart fat (KPH) records were available to compute RPP on steers (n = 5171) and heifers (n = 1400) from the American Simmental Association database; animals were sired by 561 Simmental bulls and out of 5886 crossbred dams. Genetic parameters were estimated using residual maximal likelihood and a four trait animal model for the components of RPP including fixed harvest contemporary group effects, random animal genetic effects, and a linear covariate for age at harvest. Heritability estimates were 0.51 +/- 0.05, 0.36 +/- 0.05, 0.46 +/- 0.05, and 0.18 +/- 0.05 for HCW, FAT, REA and KPH respectively. Non-zero genetic correlations were estimated between HCW and REA (rg = 0.51 +/- 0.06) and between REA and FAT (rg = -0.43 +/- 0.08), but other genetic correlation estimates among the component traits were low. As a linear function of its components, heritability and genetic correlations involving RPP were estimated using index methods. The heritability estimate for RPP was 0.41, and genetic correlations were -0.17, -0.83, 0.67, and 0.01 with HCW, FAT, REA and KPH respectively. Therefore, RPP was strongly associated with muscle and fat deposition, but essentially independent of carcass weight and internal body cavity fat. Genetic evaluation of RPP would be straightforward using multiple trait index methods and genetic regression, although the inclusion of KPH would be of marginal value.  相似文献   

20.
本研究以1986年中国自主培育兼用牛新品种--三河牛,在内蒙古海拉尔谢尔塔拉种牛场核心群5 257头1998-2012年20 949条繁殖记录为研究材料,以青年牛首次妊娠日龄、青年牛首次产犊日龄、成母牛妊娠期、成母牛空怀期、产犊间隔为研究对象,用SAS 9.13、DMU软件对数据进行处理,采用AI-REML结合EM算法并配合多性状动物模型对各性状影响因素方差组分进行估计,估算出各性状遗传力,并利用各性状育种值分析其遗传趋势.结果显示,青年牛首次妊娠日龄、青年牛首次产犊日龄、成母牛妊娠期、成母牛空怀期、产犊间隔遗传力分别为0.0552、0.0638、0.0527、0.1096、0.0844,繁殖性状除成母牛空怀期遗传力为0.1096外,其余均小于0.1,属于低遗传力性状.青年牛首次妊娠日龄、青年牛首次产犊日龄、成母牛妊娠期、成母牛空怀期、产犊间隔育种值遗传趋势总体上无明显下降趋势,三河牛繁殖性能保持良好.该试验结果为三河牛优化育种方案、提高选种准确性提供重要理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号