首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Franks PJ 《Tree physiology》2004,24(8):865-878
A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.  相似文献   

2.
Midday stomatal closure is mediated by the availability of water in the soil, leaf and atmosphere, but the response to these environmental and internal variables is highly species specific. We tested the hypothesis that species differences in stomatal response to humidity and soil water availability can be explained by two parameters: leaf-specific hydraulic conductance (K(L)) and a threshold leaf water potential (Psi(threshold)). We used a combination of original and published data to estimate characteristic values of K(L) and Psi(threshold) for four common tree species that have distinctly different stomatal behaviors: black cottonwood (Populus trichocarpa Torr. & Gray.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), red alder (Alnus rubra Bong.) and western hemlock (Tsuga heterophylla (Raf.) Sarg.). We used the values to parameterize a simple, nonelastic model that predicts stomatal conductance by linking hydraulic flux to transpirational flux and maintaining Psi(leaf) above Psi(threshold). The model successfully predicted fundamental features of stomatal behavior that have been reported in the literature for these species. We conclude that much of the variation among the species in stomatal response to soil and atmospheric water deficits can be explained by K(L) and Psi(threshold). The relationship between Psi(threshold) and xylem vulnerability to cavitation differed among these species.  相似文献   

3.
We tested the hypotheses that hydraulic conductance is lower in old (about 250 years old and 30 m tall) compared to young (about 40 years old and 10 m tall) Pinus ponderosa Dougl. ex Laws. trees and that lower hydraulic conductance of old trees limits their photosynthesis. Hydraulic conductance at the end of summer 1995, calculated from leaf water potential and leaf gas exchange measurements on one-year-old needles, was 44% lower in old trees compared to young trees growing in a mixed age-class stand on the east slope of the Oregon Cascades. Whole-tree sapflow per unit leaf area averaged 53% lower in old trees compared to young trees and mean hydraulic conductance calculated from sapflow and water potential data was 63% lower in old trees than in young trees. For the entire summer, stomatal conductance (g(s)) and assimilation (A) declined more steeply with air saturation deficit (D) in old trees than in young trees. For both old and young trees, mean g(s) and A were approximately 32 and 21% lower, respectively, at typical midday D values (2.5-3.0 kPa). We hypothesized that if hydraulic conductance limits g(s) and A, then increasing or decreasing the leaf specific conductance of a branch will result in proportional changes in the responses of g(s) and A with D. Removal of 50% of the foliage from a set of experimental branches on old trees caused g(s) and A to decline less steeply with D in early summer, but values were not significantly different from control values in late summer. Cutting transverse notches in branches on young trees had no effect on the responses of g(s) and A with D. Leaf nitrogen content and photosynthetic capacity were similar suggesting that differences in g(s) and A between old and young trees were not caused by differences in photosynthetic capacity.  相似文献   

4.
Day ME 《Tree physiology》2000,20(1):57-63
The roles of temperature (T) and leaf-to-air vapor pressure deficit (VPD) in regulating net photosynthesis (A(net)) and stomatal conductance (G(s)) of red spruce (Picea rubens Sarg.) were investigated in a field study and in a controlled environment experiment. Both A(net) and G(s) exhibited a relatively flat response to temperatures between 16 and 32 degrees C. Temperatures between 32 and 36 degrees C markedly decreased both A(net) and G(s). Vapor pressure deficits above 2 kPa had significant effects on both A(net) and G(s). The influence of VPD on A(net) and G(s) fit a linear response model and did not interact significantly with T effects.  相似文献   

5.
We investigated the impact of drought on the physiology of 41-year-old Scots pine (Pinus sylvestris L.) in central Scotland. Measurements were made of the seasonal course of transpiration, canopy stomatal conductance, needle water potential, xylem water content, soil-to-needle hydraulic resistance, and growth. Comparison was made between drought-treated plots and those receiving average precipitation. In response to drought, transpiration rate declined once volumetric water content (VWC) over the top 20 cm of soil reached a threshold value of 12%. Thereafter, transpiration was a near linear function of soil water content. As the soil water deficit developed, the hydraulic resistance between soil and needles increased by a factor of three as predawn needle water potential declined from -0.54 to -0.71 MPa. A small but significant increase in xylem embolism was detected in 1-year-old shoots. Stomatal control of transpiration prevented needle water potential from declining below -1.5 MPa. Basal area, and shoot and needle growth were significantly reduced in the drought treatment. In the year following the drought, canopy stomatal conductance and soil-to-needle hydraulic resistance recovered. Current-year needle extension recovered, but a significant reduction in basal area increment was evident one year after the drought. The results suggest that, in response to soil water deficit, mature Scots pine closes its stomata sufficiently to prevent the development of substantial xylem embolism. Reduced growth in the year after a severe soil water deficit is most likely to be the result of reduced assimilation in the year of the drought, rather than to any residual embolism carried over from one year to the next.  相似文献   

6.
Influences of environmental factors on transpiration are interactive. Sensitivities of transpiration responses to both evaporative demand and rainfall under contrasting soil water conditions constitute the physiological basis of the drought tolerance of trees. Such knowledge is practically significant for plantation management, especially for irrigation management. We therefore conducted a 6-year study on the transpiration of a poplar plantation in temperate China to elucidate the existence and pattern of the influence of the soil water over stand transpiration responses to (1) vapor pressure deficit (VPD), the major indicator of air dryness and (2) the rainfall, in terms of total amount and event size. The results showed that the response of plantation transpiration (E c ) to VPD was conditioned by soil moisture. There was a significant difference in the frequency distribution of maximum sap flux under contrasting soil relative extractable water. E c after rainfall of different sizes varied under similar VPD. The increasing occurrences of only large rainfall events led to enhanced total E c during the growing season, but prolonged rainless intervals did not lead to a continuous decrease of E c , suggesting appreciable supplements from the soil water were present to sustain transpiration. In addition, the balance of soil water between replenishment and extraction also conditioned the influence of rainfall over subsequent E c during the respective rainless intervals. Based on the E c responses to VPD and rainfall under different soil moisture levels, irrigation that directly replenishes the deep soil layers in order to alleviate water stress on transpiration during the small-rain event-dominated growing season is an effective and water-saving approach to guarantee trees survival during drought period.  相似文献   

7.
The branch bag method was used to monitor photosynthesis and transpiration of trembling aspen (Populus tremuloides Michx.) and hazelnut (Corylus cornuta Marsh.) over a 42-day midsummer period in 1996, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). During the same period, daytime measurements of stomatal conductance (g(s)) and leaf water potential (Psi(leaf)) were made on these species, and sap flow was monitored in aspen stems by the heat pulse method. Weather conditions during the study period were similar to the long-term average. Despite moist soils, both species showed an inverse relationship between daytime g(s) and vapor pressure deficit (D) when D was > 0.5 kPa. Daytime Psi(leaf) was below -2 MPa in aspen and near -1.5 MPa in hazelnut, except on rainy days. These results are consistent with the hypothesis that stomatal responses are constrained by hydraulic resistance from root to leaf, and by the need to maintain Psi(leaf) above a minimum threshold value. Reductions in g(s) on sunny afternoons with elevated ambient D (maximum 2.3 kPa) were associated with a significant decrease in photosynthetic rates. However, day-to-day variation in mean carbon assimilation rate was small in both species, and appeared to be governed more by solar radiation than D. These results may be generally applicable to healthy aspen stands under normal midsummer conditions in the southern boreal forest. However, strong reductions in carbon uptake may be expected at the more extreme values of D (> 4 kPa) that occur during periods of regional drought, even if soil water is not locally limiting.  相似文献   

8.
Summary The rate of heartwood development was examined at four heights in stems of Pinus radiata D. Don from 18 mature stands in south-eastern Australia. While the diameter of heartwood tended to be greatest at stump and breast heights, formation commenced earlier (i.e. with fewer sapwood rings) and/or progressed more rapidly 10–20 m above ground level. Appreciable variation in heartwood development was detected between trees in the same and different stands, with both environmental and genetic factors apparently important. Regression analyses involving three parameters of heartwood development (number of rings, diameter and percentage area) and stem characteristics including height, diameter and ring width suggested that heartwood formation is affected little by tree vigour in the post-juvenile growth phase. Rather it seems that the rate at which annual increments are included in heartwood is largely fixed for any particular height level and stem. Thus the amount (but not necessarily the percentage) or heartwood in a stem is substantially dependent on diameter growth early in tree life.The expert technical assistance of Mr. R. Colley is gratefully acknowledged. Valuable assistance in the measurement of heartwood dimensions was also provided by Ms. V. Kurz and Mr. C. Slatyer. Dr. R. K. Bamber and Mr. A. P. Wilkins offered particularly helpful advice  相似文献   

9.
To quantify the relationship between temporal and spatial variation in tree transpiration, we measured sap flow in 129 trees with constant-heat sap flow sensors in a subalpine forest in southern Wyoming, USA. The forest stand was located along a soil water gradient from a stream side to near the top of a ridge. The stand was dominated by Pinus contorta Dougl. ex Loud. with Picea engelmannii Parry ex Engelm and Abies lasiocarpa (Hook.) Nutt. present near the stream and scattered individuals of Populus tremuloides Michx. throughout the stand. We used a cyclic sampling design that maximized spatial information with a minimum number of samples for semivariogram analyses. All species exhibited previously established responses to environmental variables in which the dominant driver was a saturating response to vapor pressure deficit (D). This response to D is predictable from tree hydraulic theory in which stomatal conductance declines as D increases to prevent excessive cavitation. The degree to which stomatal conductance declines with D is dependent on both species and individual tree physiology and increases the variability in transpiration as D increases. We quantified this variability spatially by calculating the spatial autocorrelation within 0.2-kPa D bins. Across 11 bins of D, spatial autocorrelation in individual tree transpiration was inversely correlated to D and dropped from 45 to 20 m. Spatial autocorrelation was much less for transpiration per unit leaf area and not significant for transpiration per unit sapwood area suggesting that spatial autocorrelation within a particular D bin could be explained by tree size. Future research should focus on the mechanisms underlying tree size spatial variability, and the potentially broad applicability of the inverse relationship between D and spatial autocorrelation in tree transpiration.  相似文献   

10.
Cottonwood (Populus deltoides Bartr. ex Marsh.) trees grown for 9 months in elevated carbon dioxide concentration ([CO2]) showed significant increases in height, leaf area and basal diameter relative to trees in a near-ambient [CO2] control treatment. Sample trees in the CO2 treatments were subjected to high and low atmospheric vapor pressure deficits (VPD) over a 5-week period at both high and low soil water contents (SWC). During these periods, transpiration rates at both the leaf and canopy levels were calculated based on sap flow measurements and leaf-to-sapwood area ratios. Leaf-level transpiration rates were approximately equivalent across [CO2] treatments when soil water was not limiting. In contrast, during drought stress, canopy-level transpiration rates were approximately equivalent across [CO2] treatments, indicating that leaf-level fluxes during drought stress were reduced in elevated [CO2] by a factor equal to the leaf area ratio of the two canopies. The shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress suggests maximum water use rates were controlled primarily by atmospheric demand at high SWC and by soil water availability at low SWC. Changes in VPD had less effect on transpiration than changes in SWC for trees in both CO2 treatments. Transpiration rates of trees in both CO2 treatments reached maximum values at a VPD of about 2.0 kPa at high SWC, but leveled off and decreased slightly in both canopies as VPD increased above this value. At low SWC, increasing VPD from approximately 1.4 to 2.5 kPa caused transpiration rates to decline slightly in the canopies of trees in both treatments, with significant (P = 0.004) decreases occurring in trees in the near-ambient [CO2] treatment. The transpiration responses at high VPD in the presence of high SWC and throughout the low SWC treatment suggest some hydraulic limitations to water use occurred. Comparisons of midday leaf water potentials of trees in both CO2 treatments support this conclusion.  相似文献   

11.
We used 20-mm-long, Granier-type sensors to quantify the effects of tree size, azimuth and radial position in the xylem on the spatial variability in xylem sap flux in 64-year-old trees of Taxodium distichum L. Rich. growing in a flooded forest. This information was used to scale flux to the stand level to investigate variations in half-hourly and daily (24-hour) sums of sap flow, transpiration per unit of leaf area, and stand transpiration in relation to vapor pressure deficit (D) and photosynthetically active radiation (Q(o)). Measurements of xylem sap flux density (J(s)) indicated that: (1) J(s) in small diameter trees was 0.70 of that in medium and large diameter trees, but the relationship between stem diameter as a continuous variable and J(s) was not significant; (2) J(s) at 20-40 mm depth in the xylem was 0.40 of that at 0-20 mm depth; and (3) J(s) on the north side of trees was 0.64 of that in directions 120 degrees from the north. Daily transpiration was linearly related to daily daytime mean D, and reached a modest value of 1.3 mm day(-1), reflecting the low leaf area index (LAI = 2.2) of the stand. Because there was no soil water limitation, half-hourly water uptake was nearly linearly related to D at D < 0.6 kPa during both night and day, increasing to saturation during daytime at higher values of D. The positive effect of Q(o) on J(s) was significant, but relatively minor. Thus, a second-order polynomial with D explained 94% of the variation in J(s) and transpiration. An approximately 40% reduction in LAI by a hurricane resulted in decreases of about 18% in J(s) and stand transpiration, indicating partial stomatal compensation.  相似文献   

12.
Foliar light-saturated net assimilation rates (A) generally decrease with increasing tree height (H) and tree age (Y), but it is unclear whether the decline in A is attributable to size- and age-related modifications in foliage morphology (needle dry mass per unit projected area; M(A)), nitrogen concentration, stomatal conductance to water vapor (G), or biochemical foliage potentials for photosynthesis (maximum carboxylase activity of Rubisco; V(cmax)). I studied the influences of H and Y on foliage structure and function in a data set consisting of 114 published studies reporting observations on more than 200 specimens of various height and age of Picea abies (L.) Karst. and Pinus sylvestris L. In this data set, foliar nitrogen concentrations were independent of H and Y, but net assimilation rates per unit needle dry mass (A(M)) decreased strongly with increasing H and Y. Although M(A) scaled positively with H and Y, net assimilation rates per unit area (A(A) = M(A) x A(M)) were strongly and negatively related to H, indicating that the structural adjustment of needles did not compensate for the decline in mass-based needle photosynthetic rates. A relevant determinant of tree height- and age-dependent modifications of A was the decrease in G. This led to lower needle intercellular CO2 concentrations and thereby to lower efficiency with which the biochemical photosynthetic apparatus functioned. However, V(cmax) per unit needle dry mass and area strongly decreased with increasing H, indicating that foliar photosynthetic potentials were lower in larger trees at a common intercellular CO2 concentration. Given the constancy of foliar nitrogen concentrations, but the large decline in apparent V(cmax) with tree size and age, I hypothesize that the decline in Vcmax results from increasing diffusive resistances between the needle intercellular air space and carboxylation sites in chloroplasts. Increased diffusive limitations may be the inevitable consequence of morphological adaptation (changes in M(A) and needle density) to greater water stress in needles of larger trees. Foliage structural and physiological variables were nonlinearly related to H and Y, possibly because of hyperbolic decreases in shoot hydraulic conductances with increasing tree height and age. Although H and Y were correlated, foliar characteristics were generally more strongly related to H than to Y, suggesting that increases in height rather than age are responsible for declines in foliar net assimilation capacities.  相似文献   

13.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

14.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots.  相似文献   

15.
Surface conductance to water vapor diffusion was measured in individual peach fruits (Prunus persica (L.) Batsch) and plotted as a function of fresh fruit mass for four cultivars. Surface conductance increased with fresh fruit mass, but the pattern differed with cultivar, and fruit-to-fruit variation occurred. Relationships between fruit mass and surface conductance were modeled by fitting mathematical equations to the data. The simulation model of Fishman and Génard (1998) was used to study dry mass and water components of fruit growth (1) when surface conductance varied with fruit size or was constant, and (2) when surface conductance values were high, moderate or low with respect to fruit mass. Increased surface conductance with fresh fruit mass resulted in fruit growth cessation. Fruits differing in surface conductance had similar dry mass. However, under well-watered conditions (stem water potential between -1 and -0.2 MPa), the water balance components of growth (osmotic and hydrostatic pressure, water potential and water balance) differed greatly and, as a result, the lower the surface conductance the greater the fresh fruit mass. These differences were buffered under drought conditions (stem water potential between -2.4 and -0.6 MPa).  相似文献   

16.
We compared sap-flux-scaled, mean, canopy stomatal conductance (GS) between Picea abies (L.) Karst. in Sweden and Pinus taeda (L.) in North Carolina, both growing on nutritionally poor soils. Stomatal conductance of Picea abies was approximately half that of Pinus taeda and the sensitivity of GS in Picea abies to vapor pressure deficit (D) was lower than in Pinus taeda. Optimal fertilization increased leaf area index (L) two- and threefold in Pinus taeda and Picea abies, respectively, regardless of whether irrigation was increased. Although it increased L, fertilization did not increase GS in Picea abies unless irrigation was also provided. In Pinus taeda growing on coarse, sandy soils, the doubling of L in response to fertilization reduced GS sharply unless irrigation was also provided. The reduction in GS with fertilization in the absence of irrigation resulted from the production of fine roots with low saturated hydraulic conductivity. When Pinus taeda received both fertilization and irrigation, the increase in L was accompanied by a large increase in GS. In Pinus taeda, a reference GS (defined as GS at D = 1 kPa; GSR) decreased in all treatments with decreasing volumetric soil water content (theta). In Picea abies, theta varied little within a treatment, but overall, GSR declined with theta, reaching lowest values when drought was imposed by the interception of precipitation. Despite the large difference in GS both between Picea abies and Pinus taeda and among treatments, stem growth was related to absorbed radiation, and stem growth response to treatment reflected mostly the changes in L.  相似文献   

17.
Leaf hydraulic conductance (K(leaf)) and several characteristics of hydraulic architecture and physiology were measured during the first 10 weeks of leaf ontogeny in Populus tremula L. saplings growing under control, mild water deficit or elevated temperature conditions. During the initial 3 weeks of leaf ontogeny, most measured characteristics rapidly increased. Thereafter, a gradual decrease in K(leaf) was correlated with a decrease in leaf osmotic potential under all conditions, and with increases in leaf dry mass per area and bulk modulus of elasticity under mild water deficit and control conditions. From about Week 3 onward, K(leaf) was 33% lower in trees subjected to mild water deficit and 33% higher in trees held at an elevated temperature relative to control trees. Mild water deficit and elevated temperature treatment had significant and opposite effects on most of the other characteristics measured. The ontogenetic maximum in K(leaf) was correlated positively with the width of xylem conduits in the midrib, but negatively with the overall width of the midrib xylem, number of lateral ribs, leaf dry mass per area and bulk modulus of elasticity. The ontogenetic maximum in K(leaf) was also correlated positively with the proportion of intercellular spaces and leaf osmotic potential, but negatively with leaf thickness, volume of mesophyll cells and epidermis and number of cells per total mesophyll cell volume, the closest relationships being between leaf osmotic potential and number of cells per total mesophyll cell volume. It was concluded that differences in protoplast traits are more important than differences in xylem or parenchymal cell wall traits in determining the variability in K(leaf) among leaves growing under different environmental conditions.  相似文献   

18.
Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.  相似文献   

19.
Canopy and hydraulic conductance in young, mature and old Douglas-fir trees   总被引:1,自引:0,他引:1  
We tested for reductions in water transport with increasing tree size, a key component in determining whether gas exchange and growth are hydraulically limited in tall trees. During the summers of 1998 and 1999, we measured water transport with Granier-type, constant-heat sap flow probes, vapor pressure deficit, and leaf and soil water potentials in overstory Pseudotsuga menziesii (Mirb.) Franco trees in three stands differing in size and age (15, 32 and 60 m in height and about 20, 40 and 450 years in age, respectively) in a P. menziesii-dominated forest in the Pacific Northwest, USA. A total of 24 trees were equipped with sap flow sensors--six 60-m trees, nine 32-m trees and nine 15-m trees. Based on the sap flow measurements and leaf area information estimated from leaf area-sapwood area relationships, we estimated crown-averaged stomatal conductance (GS) and leaf-specific hydraulic conductance (KL). We tested the hypothesis that GS and KL vary inversely with tree height (15 > 32 > 60 m). Analysis of variance of GS ranked as 15 = 60 > 32 m during the early summer and 15 > 60 > 32 m during late season drought. Over the growing season, mean daily GS (+/- SE) was 29.2 +/- 4.4, 24.0 +/- 6.8 and 17.7 +/- 7.2 mmol m-2 s-1 for the 15-, 60- and 32-m trees, respectively. The value of K(L) differed among tree heights only during late season drought and ranked 15 > 32 = 60 m. A hydraulic mass balance suggests that greater sapwood conductivity in 60-m trees compared with 32- and 15-m trees is a likely cause for the departure of the above rankings from those predicted by height and leaf-to-sapwood area ratio.  相似文献   

20.
We studied changes in the hydraulic conductance of leaves (K(leaf)) between dawn and dusk during the growth period (July) and at midday at the beginning of autumn in four tree species. The main objectives of the study were to check the extent of diurnal and seasonal changes in K(leaf) and the relationships between K(leaf), irradiance and leaf gas exchange. Two evergreen (Aleurites moluccana and Persea americana) and two deciduous trees (Platanus orientalis and Quercus rubra) were studied. Leaf hydraulic conductance was measured every 2 h between 0700 and 1900 h in July and compared with values measured between 0900 and 1300 h in October. Other variables measured were photosynthetically active radiation (PAR), leaf conductance to water vapor (gL) and water potential (psiL). In July, K(leaf) varied by up to 75% in Pe. americana on a diurnal basis and by at least 44% in Q. rubra. The diurnal time course of K(leaf) showed a distinct increase between dawn and late morning (1100 h) and a subsequent decrease in the evening in A. moluccana and Pl. orientalis, whereas in the other two species, K(leaf) was highest just after dawn and lowest in the evening. In October, K(leaf) of all the species studied was lower than in July, with differences of 20 to 28% for A. moluccana and Pl. orientalis and of 66 to over 70% in Pe. americana and Q. rubra, respectively. Significant correlations were found between PAR and K(leaf) (in all species) as well as between gL and K(leaf) (in three out of four species). Leaf habit (evergreen or deciduous) did not influence absolute values of K(leaf) or its diurnal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号