首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Measurements of midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) were taken over a 4-year period in early maturing peach trees (Prunus persica (L.) Batsch cv. Flordastar) grafted on GF-677 rootstock. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that seasonal reference equations can be obtained for MDS and Ψstem using crop reference evapotranspiration (ETo), daily mean vapour pressure deficit (VPDm) and mean daily air temperature (Tm) in the case of MDS, and ETo and VPDm in the case of Ψstem. In this way, VPDm was seen to be the best predictor of MDS and Ψstem, without both were influenced significantly by yield or crop load variations between years. When the postharvest regression between MDS or Ψstem and the meteorological parameters mentioned were broken down into early and late postharvest periods, the correlation coefficients improved and were closely related to the presence or absence of sugar-demanding sinks, such as active root growth. A negative linear relationship between MDS and Ψstem was found, pointing to unchanging radial hydraulic conductivity in the bark tissues and suggesting that MDS depends to a great extent of the water potential.  相似文献   

2.
Midday leaf water potential (Ψmd) was monitored for 3 years at a commercial vineyard (cv. Pinot Noir) under four irrigation strategies. Three treatments were established based on irrigating vines with 4–6 mm/day, when daily measured Ψmd was more negative than the pre-defined threshold. After the first experimental year, thresholds were adjusted for each treatment as: (1) Control (C), irrigated when Ψmd was less than −0.6 MPa at the beginning of the season and gradually fell to −0.8 MPa at about mid-June, after which the threshold was maintained at −0.8 MPa until harvest. (2) Control–Deficit (CD), irrigated as C from bud-break to mid-June (around the middle of Stage II of fruit growth), and from then until harvest when Ψmd decreased below −1.2 MPa. (3) Deficit–Deficit (DD), irrigated when Ψmd was less than −1.0 from bud break to mid-May (about the middle of fruit growth Stage I), and after that time the Ψmd threshold became −1.2 MPa until harvest. A fourth treatment was applied following a soil water budget approach (WB). All treatments were replicated five times but irrigation in the Ψmd-based treatments were independently applied to each of the replicate plots, whereas irrigation for WB was applied equally to all replications. The more site-specific information obtained from Ψmd thresholds in C provided substantial advantages for yield homogeneity and repeatability of results with respect to WB, thus demonstrating the method’s greater ability to account for spatial variability. Average applied water for the 3 years in C, CD, and DD was 374, 250, and 178 mm, respectively, while the yields were 11.8, 9.2, and 6.1 kg/vine, respectively. The CD treatment produced better juice quality than C, and was superior in other quality parameters to both C and DD. However, over the study period, an important carryover effect was observed in the yields and the grape size of CD, which tended to diminish from year to year relative to C.  相似文献   

3.
4.
In the Trás-os-Montes region, almond orchards are usually planted in the dry soils on the upper valley of the Douro river and are typically cultivated under non-irrigated conditions, leading to low yields. This study aimed to compare the physiological responses of five almond varieties (Francoli, Ferragnès, Glorieta, Lauranne and Masbovera) growing under non-irrigated and irrigated conditions. In irrigated conditions, all cultivars had higher photosynthetic rates, with maximum rates in a range of 10–12 μmol CO2 m−2 s−1. Study of daily photosynthesis (June–August) indicates that, irrigated plants showed maximal values at 11 h (32 °C), while in water stressed ones highest values were found at 9 h (28 °C). The irrigation induced an increase in photosynthesis of around 173% in Lauranne, 187% in Francoli, 204% in Glorieta, 266% in Masbovera and 331% in Ferragnès. In relation to values of water potential that allow half-rate of photosynthesis (ψw50), they were calculated as −2.95, −2.50, −3.10, −3.20 and −3.30 MPa for Ferragnès, Glorieta, Masbovera, Francoli and Lauranne, respectively.  相似文献   

5.
The compensation heat-pulse method for measuring sap flow is tested here in olive trees (Olea europaea L.). We describe a rigorous three-way examination of the robustness of the technique for this species, and examine the potential of the technique for an automatic control of the irrigation system. Two tests were carried out using heat-pulse gear inserted into the stem of 12-year-old ‘Manzanilla’ olive trees. One test used forced-flow through a stem section, and the other involved measured water uptake by an excised tree. The measured sap flow in these two tests was in agreement with calculations from heat-pulse velocities when using a standard ‘wound correction’ to account for the presence of the probes and the disruption to the sap flow. Thus, this technique for monitoring transpiration can, we feel, be used with confidence in olives.The third experiment was carried out in the field, where we analysed sap flow data from two 29-year-old olive trees — one tree was under regular drip irrigation and the other was from dry-farming conditions. We use measurements of sap flow in the trunk to examine the hydraulic functioning of the tree, and to explore some diagnostics of water stress. Our heat-pulse measurements in the irrigated olive tree exhibited a profile of sap flow that was weighted towards the outer xylem of the tree trunk while the water-stressed trees in the field showed a profile of sap flow weighted towards the centre of the trunk. The loss of hydraulic functioning in the outermost section of the vascular system, as a result of water stress, we consider to be due both to stomatal control and to embolisms in the xylem vessels.The fourth experiment was also carried out in the field, in which sap flow measurements were made at three locations in the trunk as well as in two roots of another 29-year-old olive tree. The soil explored by each root, on opposite sides of the trunk, was differentially wetted by separate irrigation of each side. Our data showed that the surface roots were able to absorb water immediately after wetting, despite a reasonably prolonged period of moderate drought. Root activity quickly shifted to the regions where the soil had been wetted. A root in dry soil exhibited no flow at night, whereas sap flows of about 0.02 l h−1 were measured around midnight in the root drawing water from the wetter soil. Our observations suggest that the hydraulic behaviour of the trunk and surface roots might be used as a diagnostic of the onset, or severity, of water stress. Here there is not the imperative to replicate, for the prime goal is not transpiration estimation. Rather interpretation of the diurnal dynamics is used to infer the onset, or severity of water stress.The compensation heat-pulse seems a suitable technique for automatically controlling the irrigation system of olives, and probably other trees, based either on the estimation of the short-time dynamics of transpiration, or on changes in the hydraulic behaviour of the trees.  相似文献   

6.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

7.
Measurements of midday stem water potential (ψstem) and maximum daily trunk shrinkage (MDS) were done over a 3-year period in adult Fino lemon trees (Citrus limon (L.) Burm. fil.) grafted on sour orange (C. aurantium L.) rootstocks. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that reference equations can be obtained for MDS and ψstem by pooling data across several seasons using crop reference evapotranspiration (ETo), daily mean vapor pressure deficit (VPDm) and mean daily air temperature (T m) in the case of MDS, and ETo in the case of ψstem. The best predictor of MDS under non-limiting soil water conditions was T m, suggesting that MDS reference values can be obtained by means of easy and cheap measurements. MDS and ψstem values were not influenced significantly by yield or crop load variations between years. A negative linear relationship between MDS and ψstem was found, pointing to an unchanging radial hydraulic conductivity in the bark tissues and suggesting that the MDS is controlled by water potential.  相似文献   

8.
In the laboratory, molecularly thick films of compounds such as hexadecanol and octadecanol have been shown to retard the evaporation of water. While such monolayers offer the prospect of an economical solution to the evaporative loss of water from storages there are practical difficulties arising mainly from the short lifetimes of these monolayers on the water surface. This review article describes the relevant laboratory experiments and results, and then discusses the problems that have arisen in field applications. It is clear that better monolayer materials are required and that better methods of monolayer distribution would also be helpful. Although no resolution of these difficulties is available at present it is hoped that a better understanding of the problems will stimulate further research.  相似文献   

9.
Production benefits of improved allocation of irrigation water are often difficult to measure. In situations of irrigated wet rice cultivation, bothex post estimates of such benefits andex ante estimates of the maximum potential benefits of further improvements in allocation of a given water supply are possible using a conceptual framework which (1) functionally relates weekly water supplies to weekly measures of average water shortage on individual paddy fields; (2) aggregates the weekly water shortage measures into a seasonal water shortage index; and (3) relates, via a production function, the seasonal water shortage index to yields. An empirical application of this framework estimates the potential increase in production from further improvements in water allocation in one Philippine irrigation system to be negligible.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号